Application of Multilayer Perceptron Method on Heat Flow Meter Results for Reducing the Measurement Time †
Abstract
:1. Introduction
Experimental Data
2. Methods
2.1. Heat Flux Method
2.2. Artificial Neural Networks—Multilayer Perceptron
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Building Performance Institute Europe. State of the Building Stock; Technical Report; Building Performance Institute Europe (BPIE): Brussles, Belgium, 2017. [Google Scholar]
- International Organization for Standardization. ISO 9869-1:2014. Thermal insulation — Building elements — In-Situ Measurement of Thermal Resistance and Thermal Transmittance — Part 1: Heat Flow Meter Method; International Organization for Standardization (ISO): Geneva, Switzerland, 2014. [Google Scholar]
- Gaši, M.; Milovanović, B.; Gumbarević, S. Heat flux results (d137b). ZENODO 2020. Published Data. [Google Scholar] [CrossRef]
- Gaši, M.; Milovanović, B.; Gumbarević, S. Comparison of Infrared Thermography and Heat Flux Method for Dynamic Thermal Transmittance Determination. Buildings 2019, 9, 132. [Google Scholar] [CrossRef]
- Gumbarević, S. MLP_ECSA7 — Code repository. 2020. Available online: https://github.com/sanjin94/MLP_ECSA7 (accessed on 22 October 2020.).
- Chollet, F.; Katariya, Y.; Rangaswamaiah, G.; Ghosh, S.; Benoy, K.; de Marmiesse, G.; Park, H.; Nandan, A.; Nain, A. K.; Paul, S.; et al. Keras. 2015. Available online: https://github.com/keras-team/keras (accessed on 22 October 2020.).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Greg, S.; Corrado, G.S.; Davis, A.; Dean, J.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Kingma, D.P.; Adam, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Model | gSKIN®Heat Flux Sensor |
---|---|
Sensitivity | 10.93 V/(W/m |
Correction factor | 0.0137 [ V/(W/mC |
Dimensions | 30.0 × 30.0 mm |
Thickness | 2.0 mm |
Electrical resistance at 22.5 C | ≤100 |
Relative error | ±3% |
Temperature range | −50 C / +150 C |
Training Data | RMSE | MSE | MAE | Measured U-Value | Predicted U-Value | Relative Difference |
---|---|---|---|---|---|---|
1/4 of data | 1.573 | 2.474 | 1.218 | 1.126 | 8.73% | |
1/2 of data | 1.195 | 1.428 | 0.826 | 1.035 | 1.027 | 0.78% |
2/3 of data | 1.202 | 1.445 | 0.828 | 1.021 | 1.39% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumbarević, S.; Milovanović, B.; Gaši, M.; Bagarić, M. Application of Multilayer Perceptron Method on Heat Flow Meter Results for Reducing the Measurement Time. Eng. Proc. 2020, 2, 29. https://doi.org/10.3390/ecsa-7-08272
Gumbarević S, Milovanović B, Gaši M, Bagarić M. Application of Multilayer Perceptron Method on Heat Flow Meter Results for Reducing the Measurement Time. Engineering Proceedings. 2020; 2(1):29. https://doi.org/10.3390/ecsa-7-08272
Chicago/Turabian StyleGumbarević, Sanjin, Bojan Milovanović, Mergim Gaši, and Marina Bagarić. 2020. "Application of Multilayer Perceptron Method on Heat Flow Meter Results for Reducing the Measurement Time" Engineering Proceedings 2, no. 1: 29. https://doi.org/10.3390/ecsa-7-08272
APA StyleGumbarević, S., Milovanović, B., Gaši, M., & Bagarić, M. (2020). Application of Multilayer Perceptron Method on Heat Flow Meter Results for Reducing the Measurement Time. Engineering Proceedings, 2(1), 29. https://doi.org/10.3390/ecsa-7-08272