Modelling the Influence of the 2.4 GHz Electromagnetic Field on the User of a Wearable Internet of Things (IoT) Device for Monitoring Hazards in the Work Environment †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Model of EMF Source
2.2. Exposure Scenarios
2.3. Numerical Model of the Head
2.4. Numerical Simulations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vermesan, O.; Friess, P. Digitising the Industry. Internet of Things Connecting the Physical, Digital and Virtual Worlds; River Publishers: Gistrup, Denmark, 2016. [Google Scholar]
- Morzyński, L. Wireless Sensor Networks, In Occupational Noise and Workplace Acoustics—Advances in Measurement and Assessment Techniques; Pleban, D., Ed.; CRC Press: Boca Raton, USA, 2021; pp. 83–121. [Google Scholar]
- Bangotra, D.K.; Singh, Y.; Selwal, A.; Kumar, N.; Singh, P.K.; Hong, W.C. An Intelligent Opportunistic Routing Algorithm for Wireless Sensor Networks and Its Application Towards e-Healthcare. Sensors 2020, 20, 3887. [Google Scholar] [CrossRef] [PubMed]
- Ramos, V.; Trillo, A.; Suarez, O.; Febles, V.M.; Frenandez-Aldecoa, J.C.; Rabassa, L.E.; Suarez, S.D.; Karpowicz, J.; Hernandez, J.A. Electromagnetic Characterization for UHF-RFID Fixed based reader in Smart healthcare environments. In Proceedings of the International Symposium on Electromagnetic Compatibility EMC EUROPE 2020. Virtual Conference, Rome, Italy, 23–25 September 2020. [Google Scholar]
- Morzyński, L. IoT-based system for monitoring and limiting exposure to noise, vibration and other harmful factors in the working environment. In Proceedings of the Inter-Noise, Madrid, Spain, 16–19 June 2019; Institute of Noise Control Engineering: Reston, VA, USA, 2019; pp. 4734–4739. [Google Scholar]
- Morzyński, L.; Młyński, R.; Kozłowski, E. Koncepcja systemu ostrzegania pracowników stosujących ochronniki słuchu przed zbliżającym się pojazdem [Concept of the system warning hearing protectors-using employees against the approaching vehicle]. Bezpieczeństwo Pracy Nauka Prakt. 2020, 3, 16–19. [Google Scholar]
- Zradziński, P. Evaluation of the inter-person variability of hazards to the users of BAHA hearing implants caused by exposure to a low frequency magnetic field. Int. J. Radiat Biol. 2018, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hasgall, P.A.; Di Gennaro, F.; Baumgartner, C.; Neufeld, E.; Lloyd, B.; Gosselin, M.C.; Payne, D.; Klingenböck, A.; Kuster, N. IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 4.0. 2018. Available online: https://itis.swiss/virtual-population/tissue-properties/downloads/database-v4-0/ (accessed on 18 November 2020).
- Zradziński, P.; Karpowicz, J.; Gryz, K.; Leszko, W. Evaluation of hazards caused by magnetic field emitted from magnetotherapy applicator to the users of bone conduction hearing prostheses. Med. Pr. 2017, 68, 469–477. [Google Scholar] [CrossRef] [PubMed]
- International Electrotechnical Commission (IEC)/Institute of Electrical and Electronics Engineers (IEEE) 62704-1:2017. Determining the Peak Spatial-Average Specific Ab-Sorption Rate (SAR) in the Human Body from Wireless Communications Devices, 30 MHz to 6 GHz—Part 1: General Requirements for Using the Finite-Dierence Time-Domain (FDTD) Method for SAR Calculations; IEC: Geneva, Switzerland, 2017. [Google Scholar]
- European Telecommunications Standards Institute (ETSI) EN 300 328 v2.2.2 (2019-07). Wideband Transmission Systems; Data transmission equipment operating in the 2.4 GHz band; Harmonised Standard for access to radio spectrum; ETSI: Sophia-Antipolis, France, 2019. [Google Scholar]
- European Telecommunications Standards Institute (ETSI) TS 136 101 V15.9.0 (2020-02). LTE, Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception (3GPP TS 36.101 version 15.9.0 Release 15); ETSI: Sophia-Antipolis, France, 2020. [Google Scholar]
Exposure Scenario | WHSAR, 1 W/kg | SAR10g, 2 W/kg | EIRP, 3 mW |
---|---|---|---|
RF module on the headband | 0.035 | 4.0 | 6.1 |
RF module on the helmet | 0.005 | 0.4 | 350 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zradziński, P.; Karpowicz, J.; Gryz, K.; Morzyński, L.; Młyński, R.; Swidziński, A.; Godziszewski, K.; Ramos, V. Modelling the Influence of the 2.4 GHz Electromagnetic Field on the User of a Wearable Internet of Things (IoT) Device for Monitoring Hazards in the Work Environment. Eng. Proc. 2020, 2, 39. https://doi.org/10.3390/ecsa-7-08238
Zradziński P, Karpowicz J, Gryz K, Morzyński L, Młyński R, Swidziński A, Godziszewski K, Ramos V. Modelling the Influence of the 2.4 GHz Electromagnetic Field on the User of a Wearable Internet of Things (IoT) Device for Monitoring Hazards in the Work Environment. Engineering Proceedings. 2020; 2(1):39. https://doi.org/10.3390/ecsa-7-08238
Chicago/Turabian StyleZradziński, Patryk, Jolanta Karpowicz, Krzysztof Gryz, Leszek Morzyński, Rafał Młyński, Adam Swidziński, Konrad Godziszewski, and Victoria Ramos. 2020. "Modelling the Influence of the 2.4 GHz Electromagnetic Field on the User of a Wearable Internet of Things (IoT) Device for Monitoring Hazards in the Work Environment" Engineering Proceedings 2, no. 1: 39. https://doi.org/10.3390/ecsa-7-08238
APA StyleZradziński, P., Karpowicz, J., Gryz, K., Morzyński, L., Młyński, R., Swidziński, A., Godziszewski, K., & Ramos, V. (2020). Modelling the Influence of the 2.4 GHz Electromagnetic Field on the User of a Wearable Internet of Things (IoT) Device for Monitoring Hazards in the Work Environment. Engineering Proceedings, 2(1), 39. https://doi.org/10.3390/ecsa-7-08238