Breath Sounds as a Biomarker for Screening Infectious Lung Diseases †
Abstract
:1. Introduction
2. Methodology
2.1. Breath Detector
2.2. Anomaly Detection Engine
2.2.1. Machine Learning-Based Classifiers
2.2.2. Convolutional Neural Network
2.2.3. Ensembled Convolutional Neural Network
2.2.4. Gated Convolutional Recurrent Neural Network
3. Results
3.1. Breath Detector
3.2. Anomaly Detection Engine
4. Discussions
5. Conclusions
Acknowledgments
References
- Lung, J. Breath Sounds Study Guide: The Ultimate Guide to Lung Sounds and Auscultation, Self-published. 2020.
- Larson, E.C.; Goel, M.; Boriello, G.; Heltshe, S.; Rosenfeld, M.; Patel, S.N. SpiroSmart; Association for Computing Machinery (ACM): New York, NY, USA, 2012; Volume 280. [Google Scholar] [CrossRef]
- Cheng, Q.; Juen, J.; Bellam, S.; Fulara, N.; Close, D.; Silverstein, J.C.; Schatz, B. Predicting Pulmonary Function from Phone Sensors. Telemed. E-Health 2017, 23, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.-H.; Tomita, N.; Lukic, Y.; Reguera, Á.H.; Fleisch, E.; Kowatsch, T. Breeze: Smartphone-based Acoustic Real-time Detection of Breathing Phases for a Gamified Biofeedback Breathing Training. Proc. ACM Int. Mobile Wearable Ubiquitous Technol. 2019, 3, 1–30. [Google Scholar] [CrossRef]
- Oweis, R.J.; Abdulhay, E.W.; Khayal, A.; Awad, A. An alternative respiratory sounds classification system utilizing artificial neural networks. Biomed. J. 2015, 38, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Morten, G. Automated Lung Sound Analysis. Arctic Univ. Norw. 2016, 16, 18. [Google Scholar]
- Palaniappan, R.; Sundaraj, K.; Ahamed, N.U. Machine learning in lung sound analysis: A systematic review. Biocybern. Biomed. Eng. 2013, 33, 129–135. [Google Scholar] [CrossRef]
- Datta, S.; Dutta Choudhury, A.; Deshpande, P.; Bhattacharya, S.; Pal, A. Automated lung sound analysis for detecting pulmonary abnormalities. Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 2017, 4594–4598. [Google Scholar] [CrossRef]
- Faezipour, M.; Abuzneid, A. Smartphone-Based Self-Testing of COVID-19 Using Breathing Sounds. Telemed. E-Health 2020. [Google Scholar] [CrossRef]
- Piczak, K.J. ESC: Dataset for environmental sound classification. In Proceedings of the 2015 ACM Multimedia Conference, Brisbane, Australia, 26–30 October 2015; pp. 1015–1018. [Google Scholar] [CrossRef]
- Dataset: RALE: A computer-assisted instructional package. Respir Care 1990, 35, 1006.
- Palaniappan, R.; Sundaraj, K.; Sundaraj, S. A comparative study of the svm and k-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals. BMC Bioinform. 2014, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Riella, R.J.; Nohama, P.; Maia, J.M. Departamento Method for automatic detection of wheezing in lung sounds. J. Med. Syst. 2012, 36, 1707–1717. [Google Scholar] [CrossRef]
- Aykanat, M.; Kılıç, Ö.; Kurt, B.; Saryal, S. Classification of lung sounds using convolutional neural networks. Eur. J. Image Video Proc. 2017, 2017. [Google Scholar] [CrossRef]
- Saraiva, A.A.; Santos, D.B.S.; Francisco, A.A.; Vigno, J.; Sousa, M. Classification of Respiratory Sounds with Convolutional Neural Network. In Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies, Valletta, Malta, 24–26 February 2020; Volume 3. [Google Scholar]
- Viswanath, V.; Garrison, J.; Patel, S. SpiroConfidence: Determining the Validity of Smartphone Based Spirometry Using Machine Learning. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 5499–5502. [Google Scholar] [CrossRef]
- Deshpande, P.; Vempada, R.; Dasgupta, R.; Pal, A.; Roy, D. Anomaly Detection System and Method. U.S. Patent 9,984,543, 29 May 2018. [Google Scholar]
- Detecting, M.F.O.R. Systems and Methods for Detecting Pulmonary Abnormalities Using Lung. U.S. Patent 20190008475, 10 January 2019. [Google Scholar]
Model | Test Accuracy (%) | Precision (%) | Recall (%) |
---|---|---|---|
KNN | 99.39 | 98.00 | 99.00 |
RF | 99.10 | 98.00 | 98.00 |
LR | 98.79 | 98.00 | 98.00 |
Model | Test Accuracy (%) | Precision (%) | Recall (%) |
---|---|---|---|
LR | 91.35 | 91.00 | 91.00 |
SVM | 93.60 | 93.00 | 94.00 |
ANN | 94.70 | 92.00 | 90.00 |
RF | 91.01 | 92.00 | 90.00 |
KNN | 91.50 | 92.00 | 90.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senthilnathan, H.; Deshpande, P.; Rai, B. Breath Sounds as a Biomarker for Screening Infectious Lung Diseases. Eng. Proc. 2020, 2, 65. https://doi.org/10.3390/ecsa-7-08200
Senthilnathan H, Deshpande P, Rai B. Breath Sounds as a Biomarker for Screening Infectious Lung Diseases. Engineering Proceedings. 2020; 2(1):65. https://doi.org/10.3390/ecsa-7-08200
Chicago/Turabian StyleSenthilnathan, Harini, Parijat Deshpande, and Beena Rai. 2020. "Breath Sounds as a Biomarker for Screening Infectious Lung Diseases" Engineering Proceedings 2, no. 1: 65. https://doi.org/10.3390/ecsa-7-08200
APA StyleSenthilnathan, H., Deshpande, P., & Rai, B. (2020). Breath Sounds as a Biomarker for Screening Infectious Lung Diseases. Engineering Proceedings, 2(1), 65. https://doi.org/10.3390/ecsa-7-08200