SHM and Efficient Strategies for Reduced-Order Modeling †
Abstract
:1. Introduction
2. Methodology
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ayyub, B.M. (Ed.) Climate-Resilient Infrastructure: Adaptive Design and Risk Management; American Society of Civil Engineers: Reston, VA, USA, 2018. [Google Scholar]
- Achenbach, J.D. Structural health monitoring—What is the prescription? Mech. Res. Commun. 2009, 36, 137–142. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Entezami, A.; Shariatmadar, H.; Mariani, S. Fast unsupervised learning methods for structural health monitoring with large vibration data from dense sensor networks. Struct. Health Monit. 2020, 19, 1685–1710. [Google Scholar] [CrossRef]
- Entezami, A.; Shariatmadar, H.; Mariani, S. Early damage assessment in large-scale structures by innovative statistical pattern recognition methods based on time series modeling and novelty detection. Adv. Eng. Softw. 2020, 150, 102923. [Google Scholar] [CrossRef]
- Entezami, A.; Sarmadi, H.; Behkamal, B.; Mariani, S. Big Data analytics and structural health monitoring: A statistical pattern recognition-based approach. Sensors 2020, 20, 2328. [Google Scholar] [CrossRef] [PubMed]
- Rosafalco, L.; Manzoni, A.; Mariani, S.; Corigliano, A. Fully convolutional networks for structural health monitoring through multivariate time series classification. Adv. Model. Simul. Eng. Sci. 2020, 7, 38. [Google Scholar] [CrossRef]
- Corigliano, A.; Mariani, S. Identification of a constitutive model for the simulation of time-dependent interlaminar debonding processes in composites. Comput. Methods Appl. Mech. Eng. 2002, 191, 1861–1894. [Google Scholar] [CrossRef]
- Corigliano, A.; Mariani, S. Parameter identification in explicit structural dynamics: performance of the extended Kalman filter. Comput. Methods Appl. Mech. Eng. 2004, 193, 3807–3835. [Google Scholar] [CrossRef]
- Mariani, S.; Corigliano, A. Impact induced composite delamination: state and parameter identification via joint and dual extended Kalman filters. Comput. Methods Appl. Mech. Eng. 2005, 194, 5242–5272. [Google Scholar] [CrossRef]
- Eftekhar Azam, S.; Ghisi, A.; Mariani, S. Parallelized sigma-point Kalman filtering for structural dynamics. Comput. Struct. 2012, 92–93, 193–205. [Google Scholar] [CrossRef]
- Chatzi, E.; Smyth, A. Particle filter scheme with mutation for the estimation of time-invariant parameters in structural health monitoring applications. Struct. Control Health Monit. 2013, 20, 1081–1095. [Google Scholar] [CrossRef]
- Mariani, S.; Gobat, G. Identification of strength and toughness of quasi-brittle materials from spall tests: A Sigma-point Kalman filter approach. Inverse Probl. Sci. Eng. 2019, 27, 1318–1346. [Google Scholar] [CrossRef]
- Kerschen, G.; Golinval, J. Physical Interpretation of the Proper Orthogonal Modes Using the Singular Value Decomposition. J. Sound Vib. 2002, 249, 849–865. [Google Scholar] [CrossRef]
- Kerschen, G.; Golinval, J.C.; Vakakis, A.F.; Bergman, L.A. The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview. Nonlinear Dyn. 2005, 41, 147–169. [Google Scholar] [CrossRef]
- Corigliano, A.; Dossi, M.; Mariani, S. Model order reduction and domain decomposition strategies for the solution of the dynamic elasto-plastic structural problem. Comput. Methods Appl. Mech. Eng. 2015, 290, 127–155. [Google Scholar] [CrossRef]
- Faucher, V.; Combescure, A. Local modal reduction in explicit dynamics with domain decomposition. Part 2: Specific interface treatment when modal subdomains are involved. Int. J. Numer. Methods Eng. 2004, 61, 69–95. [Google Scholar] [CrossRef]
- Corigliano, A.; Dossi, M.; Mariani, S. Domain decomposition and model order reduction methods applied to the simulation of multiphysics problems in MEMS. Comput. Struct. 2013, 122, 113–127. [Google Scholar] [CrossRef]
- Corigliano, A.; Confalonieri, F.; Dossi, M.; Mariani, S. Coupled domain decomposition-proper orthogonal decomposition methods for the simulation of quasi-brittle fracture processes. Adv. Model. Simul. Eng. Sci. 2016, 3, 28. [Google Scholar] [CrossRef]
- Capellari, G.; Chatzi, E.; Mariani, S. Cost-benefit optimization of structural health monitoring sensor networks. Sensors 2018, 18, 2174. [Google Scholar] [CrossRef]
- Capellari, G.; Chatzi, E.; Mariani, S. Structural Health Monitoring Sensor Network Optimization through Bayesian Experimental Design. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2018, 4, 04018016. [Google Scholar] [CrossRef]
- Gravouil, A.; Combescure, A. Multi-time-step explicit-implicit method for non-linear structural dynamics. Int. J. Numer. Methods Eng. 2001, 50, 199–225. [Google Scholar] [CrossRef]
- Mahjoubi, N.; Gravouil, A.; Combescure, A.; Greffet, N. A monolithic energy conserving method to couple heterogeneous time integrators with incompatible time steps in structural dynamics. Comput. Methods Appl. Mech. Eng. 2011, 200, 1069–1086. [Google Scholar] [CrossRef]
- Eftekhar Azam, S.; Mariani, S. Investigation of computational and accuracy issues in POD-based reduced order modeling of dynamic structural systems. Eng. Struct. 2013, 54, 150–167. [Google Scholar] [CrossRef]
- Eftekhar Azam, S. Online Damage Detection in Structural Systems; Springer: Cham, Switzerland,, 2014. [Google Scholar]
- Capellari, G.; Eftekhar Azam, S.; Mariani, S. Damage detection in flexible plates through reduced-order modeling and hybrid particle-Kalman filtering. Sensors 2016, 16, 2. [Google Scholar] [CrossRef]
- Eftekhar Azam, S.; Mariani, S.; Attari, N. Online damage detection via a synergy of proper orthogonal decomposition and recursive Bayesian filters. Nonlinear Dyn. 2017, 89, 1489–1511. [Google Scholar] [CrossRef]
- Eftekhar Azam, S.; Mariani, S. Online damage detection in structural systems via dynamic inverse analysis: A recursive Bayesian approach. Eng. Struct. 2018, 159, 28–45. [Google Scholar] [CrossRef]
- Rosafalco, L.; Torzoni, M.; Manzoni, A.; Mariani, S.; Corigliano, A. Online structural health monitoring by model order reduction and deep learning algorithms. 2020; Submitted. [Google Scholar]
SDs | Time Step [s] | POMs | Elapsed Time [s] | Speedup |
---|---|---|---|---|
1 | 1 | 0.35 | 205.5 | |
1 | 1.95 | 258.1 | ||
1 | 18.1 | 279.08 | ||
2 | 1 | 0.81 | 62.04 | |
1 | 7.34 | 67.63 | ||
1 | 7.2 | 69.95 | ||
3 | 1 | 2.35 | 21.77 | |
1 | 26.3 | 19.29 | ||
1 | 280 | 18.08 | ||
4 | 1 | 4.6 | 11 | |
1 | 52.8 | 9.6 | ||
1 | 580 | 8.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gobat, G.; Azam, S.E.; Mariani, S. SHM and Efficient Strategies for Reduced-Order Modeling. Eng. Proc. 2020, 2, 98. https://doi.org/10.3390/engproc2020002098
Gobat G, Azam SE, Mariani S. SHM and Efficient Strategies for Reduced-Order Modeling. Engineering Proceedings. 2020; 2(1):98. https://doi.org/10.3390/engproc2020002098
Chicago/Turabian StyleGobat, Giorgio, Saeed Eftekhar Azam, and Stefano Mariani. 2020. "SHM and Efficient Strategies for Reduced-Order Modeling" Engineering Proceedings 2, no. 1: 98. https://doi.org/10.3390/engproc2020002098
APA StyleGobat, G., Azam, S. E., & Mariani, S. (2020). SHM and Efficient Strategies for Reduced-Order Modeling. Engineering Proceedings, 2(1), 98. https://doi.org/10.3390/engproc2020002098