A Review on Fiber-Reinforced Foam Concrete †
Abstract
:1. Introduction
2. Fibers Used in Foam Concrete
2.1. Synthetic Fibers
2.1.1. Polypropylene Fibers
2.1.2. Steel Fibers
2.1.3. Basalt and Asbestos Fibers
2.1.4. Plastic
2.1.5. Polyvinyl Alcohol (PVA) Fibers
2.1.6. Carbon Fibers
2.2. Natural Fibers
2.2.1. Wood Fibers
2.2.2. Flax Fibers
2.2.3. Bamboo Fibers
2.2.4. Sisal and Coir Fibers
2.2.5. Banana Fibers
2.2.6. Coconut and Pineapple Leaves Fibers
2.2.7. Hemp and Kenaf Fibers
3. Conclusions
Future Research Recommendation
- Further investigation is required for the thermal insulation properties of fiber-reinforced foam concrete.
- Extra efforts should be made to investigate the acoustic properties of fiber-reinforced foam concrete.
- Further studies are required to investigate the impact strength of fiber-reinforced foam concrete.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodman, H.J. Low-Density Concrete. Fulton’s Concrete Technology, 7th ed.; Addis, B.J., Ed.; Portland Cement Institute: Midrand, South Africa, 1994. [Google Scholar]
- Ismail, K.M.; Fathi, M.S.; Manaf, N. Study of Lightweight Concrete Behaviour; Universiti Teknologi Malaysia: Johor Bahru, Malaysia, 2004. [Google Scholar]
- Amran, Y.H.M.; Ali, A.A.A.; Rashid, R.S.M.; Hejazi, F.; Safiee, N.A. Structural behavior of axially loaded precast foamed.concrete sandwich panels. Constr. Build. Mater. 2016, 107, 307–320. [Google Scholar] [CrossRef]
- Mugahed Amran, Y.H.; Rashid, R.S.M.; Hejazi, F.; Ali, A.A.A.; Safiee, N.A.; Bida, S.M. Structural Performance of Precast Foamed Concrete Sandwich Panel Subjected to Axial Load. KSCE J. Civ. Eng. 2018, 22, 1179–1192. [Google Scholar] [CrossRef]
- Beningfield, N.; Gaimster, R.; Griffin, P. Investigation into the air void characteristics of foamed concrete. In Global Construction: Ultimate Concrete Opportunities: Proceedings of the International Conference Held at the University of Dundee, Scotland, UK on Cement Combinations for Durable Concrete, 5–7 July 2005; Thomas Telford Services Ltd.: London, UK, 2005; Volume 6, p. 6. [Google Scholar]
- Jones, M.R.; McCarthy, A. Behaviour and Assessment of Foamed Concrete for Construction Applications; Thomas Telford: London, UK, 2005. [Google Scholar]
- Mindess, S. (Ed.) Developments in the Formulation and Reinforcement of Concrete; Woodhead Publishing Limited: Cambridge, UK, 2014. [Google Scholar]
- Sach, J.; Sefert, H. Foamed Concrete Technology: Possibilities for Thermal Insulation at High Temperatures; Ceramic Forum International: Baden-Baden, Germany, 1999; Volume 76, pp. 23–30. [Google Scholar]
- Short, A.; Kinniburgh, W. Lightweight Concrete; Asia Publishing House: Delhi, India, 1963. [Google Scholar]
- Rudnai, G. Lightweight Concretes; Akademikiado: Budapest, Hungary, 1963. [Google Scholar]
- Kashani, A.; Ngo, T.D.; Mendis, P.; Black, J.R.; Hajimohammadi, A. A sustainable application of recycled tire crumbs as insulators in lightweight cellular concrete. J. Clean. Prod. 2017, 149, 925–935. [Google Scholar] [CrossRef]
- Abdi, A.; Eslami-Farsani, R.; Khosravi, H. Evaluating the Mechanical Behavior of Basalt Fibers/Epoxy Composites Containing Surface-modified CaCO3 Nanoparticles. Fiber. Polym. 2018, 19, 635–640. [Google Scholar] [CrossRef]
- Pakravan, H.R.; Latifi, M.; Jamshidi, M. Hybrid short fiber reinforcement system in concrete: A Review. Constr. Build. Mater. 2017, 142, 280–294. [Google Scholar] [CrossRef]
- Awang, H.; Ahmad, M.H. Durability Properties of Foamed Concrete with Fiber Inclusion. Int. J. Civ. Struct. Constr. Archit. Eng. 2014, 8, 269–272. [Google Scholar]
- Awang, H.; Ahmad, M.H.; Al-Mulali, M.Z. Influence of kenaf and polypropylene fibers on mechanical and durability properties of fiber-reinforced lightweight foamed concrete. J. Eng. Sci. Technol. 2015, 10, 496–508. [Google Scholar]
- Liu, Y.; Wang, L.; Cao, K.; Sun, L. Review on the Durability of Polypropylene Fibre-Reinforced Concrete. Adv. Civ. Eng. 2021, 2021, 6652077. [Google Scholar] [CrossRef]
- Castillo-Lara, J.F.; Flores-Johnson, E.A.; Valadez-Gonzalez, A.; Herrera-Franco, P.J.; Carrillo, J.G.; Gonzalez-Chi, P.I.; Li, Q.M. Mechanical Properties of Natural Fiber Reinforced Foamed Concrete. Materials 2020, 13, 3060. [Google Scholar] [CrossRef]
- Falliano, D.; de Domenico, D.; Ricciardi, G.; Gugliandolo, E. Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density. Constr. Build. Mater. 2019, 198, 479–493. [Google Scholar] [CrossRef]
- Bing, C.; Zhen, W.; Ning, L. Experimental Research on Properties of High-Strength Foamed Concrete. J. Mater. Civ. Eng. 2012, 24, 113–118. [Google Scholar] [CrossRef]
- Ibrahim, M.H.W.; Jamaludin, N.; Irwan, J.M.; Ramadhansyah, P.J.; Hani, A.S. Compressive and flexural strength of foamed concrete containing polyolefin fibers. Adv. Mater. Res. 2014, 911, 489–493. [Google Scholar] [CrossRef] [Green Version]
- Amran, Y.H.M.; Soto, M.G.; Alyousef, R.; El-zeadani, M.; Alabduljabbar, H.; Aune, V. Performance investigation of high-proportion Saudi-fly-ash-based concrete. Results Eng. 2020, 6, 100118. [Google Scholar] [CrossRef]
- Mydin, M.A.O.; Soleimanzadeh, S. Effect of polypropylene fiber content on flexural strength of Lightweight foamed concrete at ambient and elevated temperatures. Adv. Appl. Sci. Res. 2012, 3, 2837–2846. [Google Scholar]
- Ranjbar, N.; Zhang, M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Abd, S.M.; Ismail, D.K.; Ghalib, D. Mechanical properties of the light weight foamed concrete with steel fiber of different aspect ratios. In Proceedings of the 2018 1st International Scientific Conference of Engineering Sciences—3rd Scientific Conference of Engineering science(ISCES), Baquba, Iraq, 10–11 January 2022; pp. 305–310. [Google Scholar] [CrossRef]
- Awang, H.; Ahmad, M.H. The effect of steel fiber inclusion on the mechanical properties and durability of lightweight foam concrete. Adv. Eng. Inform 2012, 48, 9348–9351. [Google Scholar]
- Balendran, R.V.; Zhou, F.P.; Nadeem, A.; Leung, Y.T. Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Build. Environ. 2002, 37, 1361–1367. [Google Scholar] [CrossRef]
- Amran, M.; Fediuk, R.; Vatin, N.; Huei Lee, Y.; Murali, G.; Ozbakkaloglu, T.; Klyuev, S.; Alabduljabber, H. Fibre-Reinforced Foamed Concretes: A Review. Materials 2020, 13, 4323. [Google Scholar] [CrossRef]
- Zhukov, A.D.; Bessonov, I.; Efimov, B.; Medvedev, A.; Poserenin, A. Foam fiber-reinforced concrete: Technology and methodology of selection of the composition. IOP Conf. Ser. Mater. Sci. Eng. 2020, 896, 012072. [Google Scholar] [CrossRef]
- Vasilovskaya, N.G.; Endzhievskaya, I.G.; Kalugin, I.G.; Druzhinkin, S.V.; Zeer, G.M. Influence of Basalt Fibre on Foam Concrete Structure. J. Sib. Fed. Univ. Eng. Technol. 2014, 6, 689–697. [Google Scholar]
- Kudyakov, A.I.; Steshenko, A.B. Shrinkage deformation of cement foam concrete. IOP Conf. Series: Mater. Sci. Eng. 2015, 71, 012019. [Google Scholar] [CrossRef]
- Ahmed, H.K.; Abbas, W.A.; AlSaff, D. Effect of Plastic Fibers on Properties of Foamed Concrete. Eng. Technol. J. 2013, 31, 1313–1330. [Google Scholar]
- Mhedi, N.M.; Hilal, A.A.; Al-Hadithi, A. Re-Use of Waste Plastic as Fibers Production of Modified Foamed Concrete. In Proceedings of the 2018 11th International Conference on Developments in systems Engineering (DeSE), Cambridge, UK, 2–5 September 2018; pp. 295–299. [Google Scholar]
- Raj, B.; Sathyan, D.; Madhavan, M.K.; Raj, A. Mechanical and durability.Properties of hybrid fiber reinforced foam concrete. Constr. Build. Mater. 2020, 245, 118373. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Zhang, L.; Liu, Z.; Jiang, Z. Dynamic Performance of Foam Concrete with Recycled Coir Fiber. Front. Mater. 2020, 7, 567655. [Google Scholar] [CrossRef]
- Xu, R.; He, T.; Da, Y.; Liu, Y.; Li, J.; Chen, C. Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete. Constr. Build. Mater. 2019, 208, 242–249. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fiber and its composites—A review. Compos. B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Brebbia, C.A.; de Wilde, W.P. (Eds.) High-Performance Structures and Composites; WIT Press: Southampton, UK, 2002. [Google Scholar]
- Dewi, S.M.; Wijaya, M.N. The use of bamboo fiber in reinforced concrete beams to reduce crack. AIP Conf. Proc. 2017, 1887, 020003. [Google Scholar] [CrossRef]
- Kavitha, S.; Kala, T. Effectiveness of Bamboo Fiber as a Strength Enhancer in. Concrete. Int. J. Earth Sci. Eng. 2016, 9, 192–196. [Google Scholar]
- Liu, Y.; Wang, Z.; Fan, Z.; Gu, J. Study on properties of sisal fiber modified foamed concrete. IOP Conf. Series: Mater. Sci. Eng. 2020, 744, 012042. [Google Scholar] [CrossRef]
- Amarnath, Y.; Ramachandrudu, C. Properties of foamed concrete with sisal fibre. In Proceedings of the 9th International Concrete Conference 2016, Environment, Efficiency and Economic Challenges for Concrete, Dundee, UK, 4–6 July 2016. [Google Scholar]
- Huang, J.; Tian, G.; Huang, P.; Chen, Z. Flexural Performance of Sisal Fiber Reinforced Foamed Concrete under Static and Fatigue Loading. Materials 2020, 13, 3098. [Google Scholar] [CrossRef]
- Iniya, M.P.; Nirmalkumar, K. A Review on Fiber Reinforced Concrete using sisal fiber. IOP Conf. Series: Mater. Sci. Eng. 2021, 1055, 012027. [Google Scholar] [CrossRef]
- Afraz, A.; Ali, M. Effect of Banana Fiber on Flexural Properties of Fiber Reinforced Concrete for Sustainable Construction. Eng. Proc. 2021, 12, 63. [Google Scholar] [CrossRef]
- Mydin, M.O.; Rozlan, N.A.; Ganesan, S. Experimental study on the mechanical properties of coconut fibre reinforced lightweight foamed concrete. J. Mater. Environ. Sci. 2015, 6, 407–411. [Google Scholar]
- Mydin, M.A.O.; Md. Noordin, N.; Utaberta, N.; Mohd Yunos, M.Y.; Segeranazan, S. Physical properties of foamed concrete incorporating coconut fibre. J. Teknol. 2016, 78, 8250. [Google Scholar] [CrossRef]
- Irawan, T.; Idris, Y. Mechanical Properties of Foamed Concrete with Additional Pineapple Fiber and Polypropylene Fiber. J. Physics: Conf. Ser. 2019, 1198, 082018. [Google Scholar] [CrossRef]
- Netinger Grubeša, I.; Marković, B.; Gojević, A.; Brdarić, J. Effect of hemp fibers on fire resistance of concrete. Constr. Build. Mater. 2018, 184, 473–484. [Google Scholar] [CrossRef]
- Gencel, O.; Yavuz Bayraktar, O.; Kaplan, G.; Benli, A.; Martínez-Barrera, G.; Brostow, W.; Tek, M.; Bodur, B. Characteristics of hemp fiber reinforced foam concretes with fly ash and Taguchi optimization. Constr. Build. Mater. 2021, 294, 123607. [Google Scholar] [CrossRef]
- Mahzabin, M.S.; Hock, L.J.; Kang, L.S.; Jarghouyeh, E.N. Performance.of mechanical behavior of kenaf fiber reinforced foamed composite. AIP Conf. Proc. 2017, 1892, 020035. [Google Scholar] [CrossRef]
Fibers Properties | Properties of FRFC at Max Compression Strength | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ref. | Fibers | Length (mm) | Density (kg/m3) | Tensile (MPa) | Elastic Modulus (GPa) | Dia (µm) | Comp (MPa) | Density (kg/m3) | Tensile (MPa) | Flexural (MPa) |
[17] | Polypropylene | 19 | 900 | 552 | 3.8 | 70 | 2.14 | 734 | 0.341 | - |
Henequen | 19 | 1400 | 500 | 13.2 | 170 | 1.78 | 728 | 0.445 | - | |
Polymers | 20 | 1000 | 520 | - | 0.54 | 12.44 | 835 | - | 2.35 | |
[18] | Glass mesh | 4 × 4 mm | 125 m/kg2 | 25 | - | - | - | - | - | - |
Glassmesh + Polymers | - | - | - | - | - | 11.67 | 822 | - | 7.05 | |
Polypropylene | 12 | 1000 | 2.69 | 3.46 | 587 | - | - | - | - | |
[19] | Polyvinyl alcohol | 25 | 1500 | 0.9 | 29 | 398 | - | - | - | - |
Polypropylene | 12 | 15 | 2.79 | 3.48 | 25 | - | - | - | - | |
[20] | Polyolefine | 50.4 | - | 275 | 2.6 | 0.64 | 7.82 | 1600 | - | 1.53 |
[21] | Polypropylene | 15 | 900 | 800 | 8 | 100 | 50 | 1500 | 8 | - |
Properties | Numerical Results | |
---|---|---|
Foam Concrete | Fiber Foam Concrete | |
Tensile strength in bending, MPa | 1.63 | 2.32 |
Drying Shrinkage, mm/m | 3.18 | 1.37 |
Frost resistance, cycles | 35 | 75 |
Compression strength, MPa | 3.34 | 4.53 |
Heat conduction, W/(m °C) | 0.182 | 0.176 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.; Shakeel, M.; Khan, K.; Akbar, S.; Khan, A. A Review on Fiber-Reinforced Foam Concrete. Eng. Proc. 2022, 22, 13. https://doi.org/10.3390/engproc2022022013
Khan M, Shakeel M, Khan K, Akbar S, Khan A. A Review on Fiber-Reinforced Foam Concrete. Engineering Proceedings. 2022; 22(1):13. https://doi.org/10.3390/engproc2022022013
Chicago/Turabian StyleKhan, Majid, Muhammad Shakeel, Khalid Khan, Saeed Akbar, and Adil Khan. 2022. "A Review on Fiber-Reinforced Foam Concrete" Engineering Proceedings 22, no. 1: 13. https://doi.org/10.3390/engproc2022022013
APA StyleKhan, M., Shakeel, M., Khan, K., Akbar, S., & Khan, A. (2022). A Review on Fiber-Reinforced Foam Concrete. Engineering Proceedings, 22(1), 13. https://doi.org/10.3390/engproc2022022013