Incorporation of Bokashi Fermented Leaves (BFL) to Improve the Algal Growth on Concrete Surface †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bokashi Fermented Leaves
2.2. Sea Water
2.3. Phytoplankton Alga Culture
2.4. Concrete Specimen
2.4.1. Concrete Mix Design
2.4.2. Specimen Design
2.5. pH of Concrete Surface
2.6. Algal Growth
2.6.1. Experimental Setup
2.6.2. Fertilizer and Nutrient Control
2.6.3. Image Analysis
3. Results and Discussion
3.1. pH of Concrete
3.2. Algal Growth
4. Recommendations
- Various algae species, other than Chlorella vulgaris, should be checked for improvement in growth.
- Nutrients from other organic sources should be studied.
- The scope of the study should be expanded, and concrete specimens should be checked for algal growth in the real sea environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riggio, S.; Badalamenti, F.; D’Anna, G. Artificial Reefs in Sicily: An Overview. In Artificial Reefs in European Seas; Springer: Heidelberg, Germany, 2000; pp. 65–73. [Google Scholar]
- White, A.T.; Loke, C.M.; De Silva, M.W.R.N.; Guarin, F.Y. Artificial Reefs for Marine Habitat Enhancement in Southeast Asia; International Center: Mississauga, ON, Canada, 1990; Volume 11. [Google Scholar]
- Ansley, H.; Bailey, C.M.; Bedford, D.; Bell, M.; Buchanan, M.; Dauterive, L.; Dodrill, J.; Figley, B.; Francesconi, J.; Heath, S.R.; et al. Guidelines for Marine Artificial Reef Materials, 2nd ed.; Gulf States Marine Fisheries Commission: Ocean Springs, MS, USA, 2004. [Google Scholar]
- Kim, H.S.; Kim, C.G.; Na, W.B.; Kim, J.K. Chemical Degradation Characteristics of Reinforced Concrete Reefs in South Korea. Ocean Eng. 2008, 35, 738–748. [Google Scholar] [CrossRef]
- Fabi, G.; Scarcella, G.; Spagnolo, A. Practical Guidelines for Artificial Reefs in the Mediterranean and Black Sea; FAO: Rome, Italy, 2015. [Google Scholar]
- Brown, C.J. Epifaunal Colonization of the Loch Linnhe Artificial Reef: Influence of Substratum on Epifaunal Assemblage Structure. Biofouling 2005, 21, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.J.; Jensen, A.C.; Mallinson, J.J.; Roenelle, V.; Smith, I.P. Environmental Impact Assessment of a Scrap Tyre Artificial Reef. ICES J. Mar. Sci. 2002, 59, S243–S249. [Google Scholar] [CrossRef]
- Fitzhardinge, R.C.; Bailey-Brock, J.H. Colonization of Artificial Reef Materials by Corals and Other Sessile Organisms by Sessile Organisms Including Corals, Other Sessile Invertebrates and Algae Which Closely Resembles a Natural Entity Rather than a Man-Made Structure. Bull. Mar. Sci. 1989, 44, 567–579. [Google Scholar]
- Laufle, J.C.; Pauley, G.B. Fish colonization and materials comparisons on a Puget Sound artificial reef. Bull. Mar. Sci. 1985, 37, 227–243. [Google Scholar]
- Huang, X.; Wang, Z.; Liu, Y.; Hu, W.; Ni, W. On the Use of Blast Furnace Slag and Steel Slag in the Preparation of Green Artificial Reef Concrete. Constr. Build. Mater. 2016, 112, 241–246. [Google Scholar] [CrossRef]
- Ido, S.; Shimrit, P.F. Blue Is the New Green—Ecological Enhancement of Concrete Based Coastal and Marine Infrastructure. Ecol. Eng. 2015, 84, 260–272. [Google Scholar] [CrossRef]
- Kozuki, Y.; Sato, K.; Nakanishi, T.; Nishimura, H.; Tara Tatsuru Tabohashi, C.; Ishida, T.; Nakata, H.; Mizuguchi, Y.; Nogami Natsumi Yamaguchi, F.; Yamanaka, R. A Study on Primary Succession of Periphyton on Concrete Containing Amino Acid. J. Jpn. Soc. Civ. Eng. Ser B2 Coast. Eng. 2011, 67, 1126–1130. [Google Scholar] [CrossRef]
- Mohamad, N.; Samad, A.A.A.; Goh, W.I.; Monica, H.; Hasbullah, F. Nutrient Leach from Concrete Artificial Reef Incorporating with Organic Material. J. Teknol. 2016, 78, 23–27. [Google Scholar] [CrossRef]
- Dennisa, H.D.; Evansa, A.J.; Bannera, A.J.; Moore, , P.J. Reefcrete: Reducing the environmental footprint of concretes for eco-engineering marine structures. Ecol. Eng. 2018, 120, 668–678. [Google Scholar] [CrossRef]
- B Chattoo, B.B.; Frugis, G.; Kaur, B.; Edelman, M.; Colt, M. Nutrient Value of Leaf vs. Seed. Front. Chem. 2016, 4, 32. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Reicher, Z.; Bischoff, M.; Turco, R.F. The Role of Tree Leaf Mulch and Nitrogen Fertilizer on Turfgrass Soil Quality. Biol. Fertil. Soils 1999, 29, 55–61. [Google Scholar] [CrossRef]
- Akubugwo, I.E.; Obasi, A.N.; Ginika, S.C. Nutritional Potential of the Leaves and Seeds of Black Nightshade-Solanum Nigrum L. Var Virginicum from Afikpo-Nigeria. Pak. J. Nutr. 2007, 6, 323–326. [Google Scholar] [CrossRef]
- Afuang, W.; Siddhuraju, P.; Becker, K. Comparative Nutritional Evaluation of Raw, Methanol Extracted Residues and Methanol Extracts of Moringa (Moringa oleifera Lam.) Leaves on Growth Performance and Feed Utilization in Nile Tilapia (Oreochromis Niloticus L.). Aquac. Res. 2003, 34, 1147–1159. [Google Scholar] [CrossRef]
- Wee, K.L.; Wang, S. Sen Nutritive Value of Leucaena Leaf Meal in Pelleted Feed for Nile Tilapia. Aquaculture 1987, 62, 97–108. [Google Scholar] [CrossRef]
- Harrison, P.G.; Chan, A.T. MARINE BIOLOGY Inhibition of the Growth of Micro-Algae and Bacteria by Extracts of Eelgrass (Zostera marina) Leaves. Mar. Biol. 1980, 61, 21–26. [Google Scholar] [CrossRef]
- Ridge, I.; Walters, J.; Street, M. Algal Growth Control by Terrestrial Leaf Litter: A Realistic Tool? In The Ecological Bases for Lake and Reservoir Management; Harper, D.M., Brierley, B., Ferguson, A.J.D., Phillips, G., Eds.; Springer: Dordrecht, The Netherlands, 1999; Volume 136, pp. 173–180. [Google Scholar] [CrossRef]
- Paniagua-Michel, J. Microalgal Nutraceuticals. In Handbook of Marine Microalgae: Biotechnology Advances; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 255–267. ISBN 9780128011249. [Google Scholar]
- Mostert, E.S.; Grobbelaar, J.U. The Influence of Nitrogen and Phosphorus on Algal Growth and Quality in Outdoor Mass Algal Cultures. Biomass 1987, 13, 219–233. [Google Scholar] [CrossRef]
- Chen, C.; Ji, T.; Zhuang, Y.; Lin, X. Workability, Mechanical Properties and Affinity of Artificial Reef Concrete. Constr. Build. Mater. 2015, 98, 227–236. [Google Scholar] [CrossRef]
- Rachlin, J.W.; Grosso, A. The Effects of PH on the Growth of Chlorella Vulgaris and Its Interactions with Cadmium Toxicity. Arch. Environ. Contam. Toxicol. 1991, 20, 505–508. [Google Scholar] [CrossRef]
- Kumar, S.S.; Saramma, A. Effect of Organic Carbon Compounds on the Growth and Pigment Composition of Microalga-Nannochloropsis Salina. Int. J. Appl. Environ. Sci. 2017, 12, 1707–1719. [Google Scholar]
- Sharma, A.K.; Sahoo, P.K.; Singhal, S.; Patel, A. Impact of Various Media and Organic Carbon Sources on Biofuel Production Potential from Chlorella Spp. 3 Biotech 2016, 6, 116. [Google Scholar] [CrossRef] [PubMed]
- Mayo, A.W.; Noike, T. Effect of Glucose Loading on the Growth Behavior of Chlorella Vulgaris and Heterotrophic Bacteria in Mixed Culture. Water Res. 1994, 28, 1001–1008. [Google Scholar] [CrossRef]
- Kazuhiro, S.; Kozuki, Y.; Tara, C.; Nishimura, H.; Nakanishi, T.; UEDA, T.; Yamanaka, R. Existing Form of Arginine in “Environmentally Active Concrete” and the Elution Behavior in Water. J. Soc. Mater. Sci. Jpn. 2015, 64, 417–423. [Google Scholar] [CrossRef]
- Gao, Q.; Xu, W.; Xu, Y.; Wu, D.; Sun, Y.; Deng, F.; Shen, W. Amino Acid Adsorption on Mesoporous Materials: Influence of Types of Amino Acids, Modification of Mesoporous Materials, and Solution Conditions. J. Phys. Chem. B 2008, 112, 2261–2267. [Google Scholar] [CrossRef]
- Kulikova, G.A.; Ryabinina, I.V.; Parfenyuk, E.V. Effect of Chemical Nature of Nanosized Silica Surface on the Adsorption of D-Glucose. Colloid J. 2010, 72, 224–229. [Google Scholar] [CrossRef]
- Ustunol, I.B.; Gonzalez-Pech, N.I.; Grassian, V.H. PH-Dependent Adsorption of α-Amino Acids, Lysine, Glutamic Acid, Serine and Glycine, on TiO2 Nanoparticle Surfaces. J. Colloid Interface Sci. 2019, 554, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Yarish, C.; Edwards, P.; Casey, S. The Effects of Salinity, and Calcium and Potassium Variations on the Growth of Two Estuarine Red Algae. J. Exp. Mar. Biol. Ecol. 1980, 47, 235–249. [Google Scholar] [CrossRef]
Bulk Specific Gravity | 0.282 g/cm3 |
Bulk SSD Specific Gravity | 0.718 g/cm3 |
Water Absorption | 150% |
Fineness Modulus | 3.64 |
Sample 1 | |
Total Carbon | 40.87% |
Total Nitrogen | 1.35% |
Sample 2 | |
Total Carbon | 47.91% |
Total Nitrogen | 1.31% |
S. No. | Element | Analytical Value (%) | Analysis Line | X-ray Intensity |
---|---|---|---|---|
1 | Magnesium (Mg) | 1.34 | Mg-KA | 0.2904 |
2 | Aluminum (Al) | 1.35 | Al-KA | 0.8752 |
3 | Silicon (Si) | 21.7 | Si-KA | 13.2812 |
4 | Phosphorus (P) | 4.11 | P-KA | 5.1787 |
5 | Sulphur (S) | 1.47 | S-KA | 1.4525 |
6 | Chlorine (Cl) | 0.618 | Cl-KA | 0.1376 |
7 | Potassium (K) | 17.4 | K-KA | 17.2783 |
8 | Calcium (Ca) | 47.0 | Ca-KA | 26.3153 |
9 | Chromium (Cr) | 0.166 | Cr-KA | 0.0453 |
10 | Manganese (Mn) | 0.805 | Mn-KA | 0.3310 |
11 | Iron (Fe) | 3.79 | Fe-KA | 2.3443 |
12 | Zinc (Zn) | 0.151 | Zn-KA | 0.2622 |
13 | Rubidium (Rb) | 0.0637 | Rb-KA | 0.3207 |
14 | Strontium (Sr) | 0.0878 | Sr-KA | 0.5048 |
Concrete Type | |||||
---|---|---|---|---|---|
Water | Cement | Sand | Coarse Aggregate | Bokashi Fermented Leaves (BFL) | |
CC | 180 | 360 | 556 | 1133.5 | -- |
BFLC-2 | 180 | 360 | 529.41 | 1133.5 | 7.2 |
BFLC-20 | 180 | 360 | 290.2 | 1133.5 | 72 |
Concrete Type | Average pH after 5 Months of Immersion in Water |
---|---|
CC | 10 |
BFLC-2 | 10 |
BFLC-20 | 7.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousfani, A.M.; Kamada, T.; Kishi, T.; Shaikh, F.A. Incorporation of Bokashi Fermented Leaves (BFL) to Improve the Algal Growth on Concrete Surface. Eng. Proc. 2022, 22, 18. https://doi.org/10.3390/engproc2022022018
Yousfani AM, Kamada T, Kishi T, Shaikh FA. Incorporation of Bokashi Fermented Leaves (BFL) to Improve the Algal Growth on Concrete Surface. Engineering Proceedings. 2022; 22(1):18. https://doi.org/10.3390/engproc2022022018
Chicago/Turabian StyleYousfani, Abdul Mannan, Tomohisa Kamada, Toshiharu Kishi, and Farhan Ahmed Shaikh. 2022. "Incorporation of Bokashi Fermented Leaves (BFL) to Improve the Algal Growth on Concrete Surface" Engineering Proceedings 22, no. 1: 18. https://doi.org/10.3390/engproc2022022018
APA StyleYousfani, A. M., Kamada, T., Kishi, T., & Shaikh, F. A. (2022). Incorporation of Bokashi Fermented Leaves (BFL) to Improve the Algal Growth on Concrete Surface. Engineering Proceedings, 22(1), 18. https://doi.org/10.3390/engproc2022022018