Fiber Reinforced Concrete: A Review †
Abstract
:1. Introduction
2. Fibers Used in Concrete
2.1. Synthetic Fibers
2.1.1. Steel Fiber
2.1.2. Glass Fiber
2.1.3. Polypropylene Fiber
2.1.4. Carbon Fiber
2.1.5. Plastic Fiber
2.2. Natural Fibers
2.2.1. Wheat Straw
2.2.2. Sugarcane Fiber
2.2.3. Sisal Fiber
2.2.4. Jute Fiber
2.2.5. Bamboo Fiber
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ragavendra, S.; Reddy, I.P.; Dongre, A. Fibre Reinforced Concrete- A Case Study. In Proceedings of the 33rd national Convention of Architectural Engineers and National Seminar on “Architectural Engineering Aspect for sustainable building envelopes” ArchEn-BuildEn-2017, Paris, France, 11–14 November 2018. [Google Scholar]
- Zollo, R.F. Fiber-reinforced Concrete: An Overview after 30 Years of Development. Cem. Concr. Compos. 1996, 19, 107–122. [Google Scholar] [CrossRef]
- Jhatial, A.; Sohu, S.; Bhatti, N.; Lakhiar, M.; Oad, R. Effect of steel fibres on the compressive and flexural strength of concrete. Int. J. Adv. Appl. Sci. 2018, 5, 16–21. [Google Scholar] [CrossRef]
- Joshi, A.; Reddy, P.; Kumar, P.; Hatker, P. Experimental work on steel fibre reinforced concrete. Int. J. Sci. Eng. Res. 2016, 7, 971–981. [Google Scholar]
- Krishna, B.V. A Comparative and Experimental study on the mechanical properties of various steel and glass fiber reinforced High Strength Concrete. IRJET 2015, 2, 129–133. [Google Scholar]
- Farooqi, M.U.; Ali, M. Effect of Fibre Content on Compressive Strength of Wheat Straw Reinforced Concrete for Pavement Applications. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 422, 012014. [Google Scholar] [CrossRef]
- Parameswaran, V.S.; Krishnamoorthy, T.S.; Balasubramanian, K. Current Research and Applications of Fiber Reinforced Concrete Composites in India. Transp. Res. Rec. 2014, 1226, 1–6. [Google Scholar]
- Wadekar, A.P.; Pandit, R.D. Study of Different Types Fibres used in High Strength Fibre Reinforced Concrete. Int. J. Innov. Res. Adv. Eng. 2014, 1, 225–230. [Google Scholar]
- Hrynyk, T.D.; Vecchio, F.J. Behavior of Steel Fiber-Reinforced Concrete Slabs under Impact Load. Struct. J. 2014, 111, 1213–1224. [Google Scholar] [CrossRef]
- Gao, D.; Huang, Y.; Yuan, J.; Gu, Z. Probability distribution of bond efficiency of steel fiber in tensile zone of reinforced concrete beams. J. Build. Eng. 2021, 43, 102550. [Google Scholar] [CrossRef]
- Bishetti, P. Glass Fiber Reinforced Concrete. IJCE 2019, 6, 23–26. [Google Scholar] [CrossRef]
- Arunakanthi, E.; Kumar, J.C. Experimental studies on fiber reinforced concrete. Int. J. Civ. Eng. Technol. 2017, 7, 329–336. [Google Scholar]
- Khan, M.I.; Umair, M.; Shaker, K.; Basit, A.; Nawab, Y.; Kashif, M. Impact of waste fibers on the mechanical performance of concrete composites. J. Text. Inst. 2020, 111, 1632–1640. [Google Scholar] [CrossRef]
- Wang, Q.; Song, H.; Li, Y.; Wang, F.; Hu, Z.; Lou, S.; Shi, Z. Experimental Study on the Performance of Graded Glass Fiber Reinforced Concrete (G-GRC) Based on Engineering Application. Materials 2021, 14, 1149. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z.; Belkacem, L.; Abdelhak, K. Fire Resistance Performance of Glass Fiber Reinforced Concrete Columns. In CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure; Springer: Singapore, 2022; pp. 275–283. [Google Scholar]
- Murthy, Y.I.; Sharda, A.; Jain, G. Performance of Glass Fiber Reinforced Concrete. Int. J. Eng. Innov. Technol. 2012, 4, 984–988. [Google Scholar]
- Amancio, F.A.; de Carvalho Rafael, M.F.; de Oliveira Dias, A.R.; Bezerra Cabral, A.E. Behavior of concrete reinforced with polypropylene fiber exposed to high temperatures. Procedia Struct. Integr. 2018, 11, 91–98. [Google Scholar] [CrossRef]
- Patil, S.N.; Chougale, P.; Khade, P.; Sarnaik, R. Flexural Behavior of Self-Compacting Concrete Reinforced with Polypropylene Fibers. Int. J. Eng. Sci. Comput. 2018, 8, 17679–79683. [Google Scholar]
- Jassim, D.H.M.; Anwar, A.G. Experimental Study of Polypropylene Fiber-Reinforced Concrete. Int. J. RD Eng. Sci. Manag. 2016, 4, 149–161. [Google Scholar]
- Liang, N.; Ren, L.; Tian, S.; Liu, X.; Zhong, Z.; Deng, Z.; Yan, R. Study on the Fracture Toughness of Polypropylene–Basalt Fiber-Reinforced Concrete. Int. J. Concr. Struct. Mater. 2021, 15, 35. [Google Scholar] [CrossRef]
- Alsadey, S.; Salem, M. Influence of Polypropylene Fiber on Strength of Concrete. Am. J. Eng. Res. 2016, 5, 223–226. [Google Scholar]
- Nevsky, A.; Kudyakov, K.; Danke, I.; Kudyakov, A.; Kudyakov, V. Improvement of cement concrete strength properties by carbon fiber additives. AIP Conf. Proc. 2016, 1698, 070005. [Google Scholar] [CrossRef]
- Breña, S.F.; Bramblett, R.M.; Benouaich, M.A.; Wood, S.L.; Kreger, M.E. Use of Carbon Fiber Reinforced Polymer Composites to Increase the Flexural Capacity of Reinforced Concrete Beams; Texas Department of Transportation: Austin, TX, USA, 2001. [Google Scholar]
- Qiu, Y.; Zhou, C. Analytical model of large-scale circular concrete columns confined by pre-stressed carbon fibre reinforced polymer composites under axial compression. Struct. Infrastruct. Eng. 2021, 17, 1062–1075. [Google Scholar] [CrossRef]
- Aljalawi, N.M.F.; Al-Jelawy, H.M. Possibility of Using Concrete Reinforced by Carbon Fibre in Construction. Int. J. Eng. Technol. 2018, 7, 449–452. [Google Scholar] [CrossRef]
- Hassan, S.K.H.; Abdel-Jaber, M.S.; Alqam, M. Rehabilitation of Reinforced Concrete Deep Beams Using Carbon Fiber Reinforced Polymers (CFRP). Mod. Appl. Sci. 2018, 12, 179. [Google Scholar] [CrossRef]
- Ghanem, S.Y.; Bowling, J. Mechanical Properties of Carbon Fiber Reinforced Concrete. Compos. Struct. 2005, 256, 113072. [Google Scholar] [CrossRef]
- Deborah, D.L.; Chung, D.L. Carbon Fiber Reinforced Concrete; Strategic Highway Research Program: Washington, DC, USA, 1992. [Google Scholar]
- Li, Y.-F.; Li, J.-Y.; Ramanathan, G.K.; Chang, S.-M.; Shen, M.-Y.; Tsai, Y.-K.; Huang, C.-H. An Experimental Study on Mechanical Behaviors of Carbon Fiber and Microwave-Assisted Pyrolysis Recycled Carbon Fiber-Reinforced Concrete. Sustainability 2021, 13, 6829. [Google Scholar] [CrossRef]
- Alaskar, A.; Albidah, A.; Alqarni, A.S.; Alyousef, R.; Mohammadhosseini, H. Performance evaluation of high-strength concrete reinforced with basalt fibers exposed to elevated temperatures. J. Build. Eng. 2021, 35, 102108. [Google Scholar] [CrossRef]
- Rivera, J.E.; Eid, R.; Paultre, P. Influence of synthetic fibers on the seismic behavior of reinforced-concrete circular columns. Eng. Struct. 2021, 228, 111493. [Google Scholar] [CrossRef]
- Atiyeh, M.; Aydin, E. Carbon-Fiber Enriched Cement-Based Composites for Better Sustainability. Materials 2020, 13, 1899. [Google Scholar] [CrossRef]
- Shubbar, S.D.A.; Al-Shadeedi, A.S. Utilization Of Waste Plastic Bottles As Fine Aggregate In Concrete. Kufa J. Eng. 2017, 8, 132–146. [Google Scholar]
- Baldenebro-Lopez, F.J.; Castorena-Gonzalez, J.H.; Velazquez-Dimas, J.I.; Ledezma-Sillas, J.; Gómez-Esparza, C.; Martinez-Sanchez, R.; Herrera-Ramirez, J. Influence of continuous plastic fibers reinforcement arrangement in concrete strengthened. IOSR J. Eng. 2014, 4, 15–23. [Google Scholar] [CrossRef]
- Mistry, M.; Rane, G. Effect of PET bottle pieces and waste wrapper fibers on concrete compressive strength. Mater. Sci. Eng. 2021, 1116, 012156. [Google Scholar] [CrossRef]
- Kandasamy, R.; Murugesan, R. Fibre Reinforced Concrete Using Domestic Waste Plastics as Fibres. ARPN J. Eng. Appl. Sci. 2016, 6, 75–82. [Google Scholar]
- Nibudey, R.N.; Nagarnaik, P.B.; Parbat, D.K.; Pande, A.M. Strengths Prediction of Plastic fiber Reinforced concrete (M30). Int. J. Eng. Res. Appl. 2016, 3, 1818–1825. [Google Scholar]
- Bheel, N.; Sohu, S.; Awoyera, P.; Kumar, A.; Abbasi, S.A.; Olalusi, O.B. Effect of Wheat Straw Ash on Fresh and Hardened Concrete Reinforced with Jute Fiber. Adv. Civ. Eng. 2021, 2021, 6659125. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y. Research on the Performance of Straw Fiber Concrete. Mater. Sci. Eng. 2018, 394, 032080. [Google Scholar] [CrossRef]
- Onésippe, C.; Passe-Coutrin, N.; Toro, F.; Delvasto, S.; Bilba, K.; Arsène, M.-A. Sugar cane bagasse fibres reinforced cement composites: Thermal considerations. Compos. Part A Appl. Sci. Manuf. 2010, 41, 549–556. [Google Scholar] [CrossRef]
- Gebreyouhannes, E.; Geremew, M. Sugarcane Bagasse Ash as a Partial Substitute of Cement in Concrete Rigid Pavement. 2020. Available online: https://www.researchgate.net/publication/344493275_Sugarcane_Bagasse_Ash_as_a_Partial_Substitute_of_Cement_in_Concrete_Rigid_Pavement?channel=doi&linkId=5f7c5ed3458515b7cf6a3b0b&showFulltext=true (accessed on 1 May 2022). [CrossRef]
- Bilba, K.; Arsene, M.-A.; Ouensanga, A. Sugar cane bagasse fibre reinforced cement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cem. Concr. Compos. 2003, 25, 91–96. [Google Scholar] [CrossRef]
- Ghazali, M.J.; Azhari, C.H.; Abdullah, S.; Omar, M.Z. Characterisation of Natural Fibres (Sugarcane Bagasse) in Cement Composites. In Proceedings of the World Congress on Engineering 2008 Vol II, London, UK, 2–4 July 2008. [Google Scholar]
- Kumar, D.; Babu, N.V. Study on Properties of Sisal Fiber Reinforced Concrete by Adding of Different Percentages and Different Sizes of Sisal Fiber. Int. J. Manag. Technol. Eng. 2018, 8, 2466. [Google Scholar]
- Mbereyaho, L.; Twayigize, F.; Ishimwe, L.G.M.; Mutumwinka, S. Experimental investigation on the potentials of Sisal Fibres as Reinforcements for Drainage Concrete Cover Plates. Rwanda J. Eng. Sci. Technol. Environ. 2020, 3. [Google Scholar] [CrossRef]
- Swaminathan, V. Sisal Fiber Reinforced Concrete. JETIR 2018, 5, 65–69. [Google Scholar]
- Salih, Y.A.; Sabeeh, N.N.; Yass, M.F.; Ahmed, A.S.; Khudhurr, E.S. Concrete Beams Strengthened with Jute Fibers. Civ. Eng. J. 2019, 5, 767–776. [Google Scholar] [CrossRef]
- Bharathi Murugan, R.; Gayke, A.; Natarajan, C.; Haridharan, M.K.; Murali, G.; Parthiban, K. Influence of Treated Natural Jute Fiber on Flexural Properties of Reinforced Concrete Beams. Int. J. Eng. Technol. 2018, 7, 148–152. [Google Scholar] [CrossRef]
- Bilal, M. Investigation of Jute Fiber Reinforced Concrete Having GFRP Rebars in Slabs Under Impact Loading. Ph.D. Thesis, Capital University, Jhumri Telaiya, India, 2020. [Google Scholar]
- Tiwari, S.; Sahu, A.K.; Pathak, R.P. Mechanical Properties and Durability Study of Jute Fiber Reinforced Concrete. Mater. Sci. Eng. 2020, 961, 012009. [Google Scholar] [CrossRef]
- Aryanto, Y.; Wariyatno, N.G.; Hu, H.-T.; Han, A.L.; Hidayat, B.A. Investigation on Structural Behavior of Bamboo Reinforced Concrete Slabs under Concentrated Load. Sains Malays. 2021, 50, 227–238. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anas, M.; Khan, M.; Bilal, H.; Jadoon, S.; Khan, M.N. Fiber Reinforced Concrete: A Review. Eng. Proc. 2022, 22, 3. https://doi.org/10.3390/engproc2022022003
Anas M, Khan M, Bilal H, Jadoon S, Khan MN. Fiber Reinforced Concrete: A Review. Engineering Proceedings. 2022; 22(1):3. https://doi.org/10.3390/engproc2022022003
Chicago/Turabian StyleAnas, Muhammad, Majid Khan, Hazrat Bilal, Shantul Jadoon, and Muhammad Nadeem Khan. 2022. "Fiber Reinforced Concrete: A Review" Engineering Proceedings 22, no. 1: 3. https://doi.org/10.3390/engproc2022022003
APA StyleAnas, M., Khan, M., Bilal, H., Jadoon, S., & Khan, M. N. (2022). Fiber Reinforced Concrete: A Review. Engineering Proceedings, 22(1), 3. https://doi.org/10.3390/engproc2022022003