Advanced Quartz Microbalance Sensors for Gas-Phase Applications: Effect of Adsorbate on Shear Bond Stiffness between Physical Transducer and Superlattice of Latex Nanoparticles †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kravchenko, S.; Snopok, B. “Vanishing mass” in the Sauerbrey world: Quartz Crystal Microbalance study of self-assembled monolayers based on tripod-branched structure with tuneable molecular flexibility. Analyst 2020, 145, 656. [Google Scholar] [CrossRef] [PubMed]
- Hauptmann, P.; Lockley, R.; Hartmann, J.; Auge, J. Using the quartz microbalance principle for sensing mass changes and damping properties. Sens. Actuators A 1993, 37–38, 309–316. [Google Scholar] [CrossRef]
- Liang, C.; Yuan, C.-Y.; Warmack, R.J.; Barnes, C.E.; Dai, S. Ionic Liquids: A New Class of Sensing Materials for Detection of Organic Vapors Based on the Use of a Quartz Crystal Microbalance. Anal. Chem. 2002, 74, 2172–2176. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, R.; Pizzariello, A.; Dossi, N.; Lorenzon, S.; Abollino, O.; Bontempelli, G. Room temperature ionic liquids as useful overlayers for estimating food quality from their odor analysis by quartz crystal microbalance measurements. Anal. Chem. 2013, 85, 7241–7247. [Google Scholar] [CrossRef] [PubMed]
- Johannsmann, D.; Reviakine, I.; Rojas, E.; Gallego, M. Effect of sample heterogeneity on the interpretation of QCM(-D) data: Comparison of combined quartz crystal microbalance/atomic force microscopy measurements with finite element method modeling. Anal. Chem. 2008, 80, 8891–8899. [Google Scholar] [CrossRef] [PubMed]
- Kruglenko, I.V.; Snopok, B.A.; Shirshov, Y.M.; Venger, E.F. Digital aroma technology for chemical sensing: Temporal chemical images of complex mixtures. Semicond. Phys. Quantum Electron. Optoelectron. 2000, 3, 529–541. [Google Scholar] [CrossRef] [Green Version]
- Kruglenko, I.V.; Snopok, B.A.; Shirshov, Y.M.; Rowell, F.J. Multisensor systems for gas analysis: Optimization of the array for the classification of the pharmaceutical products. Semicond. Phys. Quantum Electr. Optoelectron. 2004, 7, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Snopok, B.; Kruglenko, I. Analyte induced water adsorbability in gas phase biosensors: The influence of ethinylestradiol on the water binding protein capacity. Analyst 2015, 140, 3225–3232. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.S.; Wang, M.C.; Huang, X. Evaporative deposition of polystyrene microparticles on PDMS surface. Sci. Rep. 2017, 7, 14118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burlachenko, Y.u.V.; Snopok, B.A.; Capone, S.; Siciliano, P. Performance of Machine Olfaction: Effect of Uniqueness of the Initial Data and Information Coding on the Discrimination Ability of Multisensor Arrays. IEEE Sens. J. 2011, 11, 649–656. [Google Scholar] [CrossRef]
- Burlachenko, J.V.; Snopok, B.A. Multisensor arrays for gas analysis based on photosensitive organic materials: An increase in the discrimination capacity under selective illumination conditions. J. Anal. Chem. 2008, 63, 610–619. [Google Scholar] [CrossRef]
- Snopok, B.A.; Kruglenko, I.V. Nonexponential relaxations in sensor arrays: Forecasting strategy for electronic nose performance. Sens. Actuators B Chem. 2005, 106, 101–113. [Google Scholar] [CrossRef]
- Snopok, B.A. Nonexponential Kinetics of Surface Chemical Reactions (Review). Theor. Exp. Chem. 2014, 50, 67–95. [Google Scholar] [CrossRef]
- Snopok, B.A.; Snopok, O.B. Information Processing in Chemical Sensing: Unified Evolution Coding by Stretched Exponential. In Nanostructured Materials for the Detection of CBRN; Springer: Berlin/Heidelberg, Germany, 2018; pp. 233–244. ISBN 978-94-024-1303-8. [Google Scholar]
- Burlachenko, J.; Kruglenko, I.; Manoylov, E.; Kravchenko, S.; Krishchenko, I.; Snopok, B. Virtual sensors for electronic nose devises. In Proceedings of the 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Fukuoka, Japan, 26–29 May 2019; pp. 1–3. [Google Scholar]
- Snopok, B.A.; Kruglenko, I.V. Multisensor systems for chemical analysis: State-of-the-art in electronic nose technology and new trends in machine olfaction. Thin Solid Film. 2002, 418, 21–41. [Google Scholar] [CrossRef]
- Burlachenko, Y.V.; Snopok, B.A. Methods of cluster analysis in sensor engineering: Advantages and faults. Semicond. Phys. Quantum Electron. Optoelectron. 2011, 13, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Filippov, A.P.; Strizhak, P.E.; Serebry, T.G.; Snopok, B.A. Direct identification of volatile organic vapors in complex mixtures: Advanced chemical imaging of analytes by cross-reactive sensor arrays with temporal separation. Sens. Lett. 2014, 12, 1259–1266. [Google Scholar] [CrossRef]
- Kruglenko, B.A., IV. Snopok Thin-film coating of dibenzotetraazaaannulenes for quantitative determination of hydrochloric acid vapor by quartz crystal microbalance method. Theor. Exp. Chem. 2018, 54, 53. [Google Scholar] [CrossRef]
- Filippov, A.P.; Strizhak, P.E.; Serebrii, T.G.; Tripol’Skii, A.I.; Snopok, B.A.; Khavrus, V.; Ivashchenko, T.S. New coating materials for hydrocarbon discrimination using a multisensor system and gas chromatography. Theor. Exp. Chem. 2005, 41, 389–394. [Google Scholar] [CrossRef]
- Burlachenko, J.I.; Kruglenko, B.; Snopok, K. Persaud Sample handling for electronic nose technology: State of the art and future trends. Trends Anal. Chem. 2016, 82, 222–236. [Google Scholar] [CrossRef] [Green Version]
- Reznik, A.M.; Shirshov, Y.M.; Snopok, B.A.; Nowicki, D.W.; Dekhtyarenko, A.K.; Kruglenko, I.V. Associative memories for chemical sensing. In Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP ‘02, Singapore, 18–22 November 2002; Volume 5, pp. 2630–2634. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruglenko, I.; Kravchenko, S.; Kruglenko, P.; Burlachenko, J.; Krishchenko, I.; Manoilov, E.; Snopok, B. Advanced Quartz Microbalance Sensors for Gas-Phase Applications: Effect of Adsorbate on Shear Bond Stiffness between Physical Transducer and Superlattice of Latex Nanoparticles. Eng. Proc. 2022, 27, 40. https://doi.org/10.3390/ecsa-9-13204
Kruglenko I, Kravchenko S, Kruglenko P, Burlachenko J, Krishchenko I, Manoilov E, Snopok B. Advanced Quartz Microbalance Sensors for Gas-Phase Applications: Effect of Adsorbate on Shear Bond Stiffness between Physical Transducer and Superlattice of Latex Nanoparticles. Engineering Proceedings. 2022; 27(1):40. https://doi.org/10.3390/ecsa-9-13204
Chicago/Turabian StyleKruglenko, Ivanna, Sergii Kravchenko, Petro Kruglenko, Julia Burlachenko, Iryna Krishchenko, Edward Manoilov, and Boris Snopok. 2022. "Advanced Quartz Microbalance Sensors for Gas-Phase Applications: Effect of Adsorbate on Shear Bond Stiffness between Physical Transducer and Superlattice of Latex Nanoparticles" Engineering Proceedings 27, no. 1: 40. https://doi.org/10.3390/ecsa-9-13204
APA StyleKruglenko, I., Kravchenko, S., Kruglenko, P., Burlachenko, J., Krishchenko, I., Manoilov, E., & Snopok, B. (2022). Advanced Quartz Microbalance Sensors for Gas-Phase Applications: Effect of Adsorbate on Shear Bond Stiffness between Physical Transducer and Superlattice of Latex Nanoparticles. Engineering Proceedings, 27(1), 40. https://doi.org/10.3390/ecsa-9-13204