Unsupervised and Computationally Lightweight Spectrum Sensing in IoT Devices †
Abstract
:1. Introduction
2. Material and Methods
2.1. L1-Norm Principal Component Analysis
- ;
- .
Discriminative Capabilities of the L1-Norm
3. Link to Modulation Recognition
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, A.; Rehmani, M.; Rachedi, A. Cognitive-radio-based internet of things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wirel. Commun. 2017, 24, 17–25. [Google Scholar] [CrossRef]
- Peyman, S.; Haykin, S. Fundamentals of Cognitive Radio; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Urriza, P.; Rebeiz, E.; Cabric, D. Multiple antenna cyclostationary spectrum sensing based on the cyclic correlation significance test. IEEE J. Sel. Areas Commun. 2013, 31, 2185–2195. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chai, R.; Gao, F. Matched filter based spectrum sensing and power level detection for cognitive radio network. In Proceedings of the IEEE Global Conference on Signal and Information Processing (Global SIP), Atlanta, GA, USA, 3–5 December 2014; pp. 1267–1270. [Google Scholar]
- O’Shea, T.; Roy, T.; Charles Clancy, T. Over-the-air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process. 2018, 12, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Gan, F.; Cao, X.; Liu, W. Signal Modulation Classification Based on the Transformer Network. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1348–1357. [Google Scholar] [CrossRef]
- Ansari, S.; Alnajjar, K.A.; Saad, M.; Abdallah, S.; El-Moursy, A.A. Automatic Digital Modulation Recognition Based on Genetic-Algorithm-Optimized Machine Learning Models. IEEE Access 2022, 10, 50265–50277. [Google Scholar] [CrossRef]
- Li, J.; Xin, T.; He, B.; Li, W. IQ Symbols Processing Schemes With LSTMs in OFDM System. IEEE Access 2022, 10, 70737–70745. [Google Scholar] [CrossRef]
- Camargo, J.; Martín-Clemente, R.; Hornillo-Mellado, S.; Zarzoso, V. L1-norm unsupervised Fukunaga-Koontz transform. Signal Process. 2021, 182, 107942. [Google Scholar] [CrossRef]
- Kwak, N. Principal component analysis based on L1-norm maximization. IEEE Trans. Pattern. Anal. Mach. Intell. 2008, 30, 1672–1680. [Google Scholar] [CrossRef] [PubMed]
- Dhanaraj, M.; Markopoulos, P.P. On the Asymptotic L1-PC of Elliptical Distributions. IEEE Signal Process. Lett. 2022, 29, 2343–2347. [Google Scholar] [CrossRef]
- Markopoulos, P.P.; Karystinos, G.N.; Pados, D.A. Optimal Algorithms for L1-subspace Signal Processing. IEEE Trans. Signal Process. 2014, 62, 5046–5058. [Google Scholar] [CrossRef]
- Thameri, M.; Kammoun, A.; Abed-Meraim, K.; Belouchrani, A. Fast principal component analysis and data whitening algorithms. In Proceedings of the International Workshop on Systems, Signal Processing and their Applications, WOSSPA, Tipaza, Algeria, 9–11 May 2011; pp. 139–142. [Google Scholar]
- Martín-Clemente, R.; Zarzoso, V. LDA via L1-PCA of whitened data. IEEE Trans. Signal Process. 2020, 68, 225–240. [Google Scholar] [CrossRef]
- Proakis, J.; Salehi, M. Digital Communications; Prentice-Hall: New York, NY, USA, 2007. [Google Scholar]
- Nandi, A.K.; Azzouz, E.E. Algorithms for automatic modulation recognition of communication signals. IEEE Trans. Commun. 1998, 46, 431–436. [Google Scholar] [CrossRef]
- Martın-Clemente, R.; Zarzoso, V. On the Link Between L1-PCA and ICA. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 515–528. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Clemente, R.; Zarzoso, V. Unsupervised and Computationally Lightweight Spectrum Sensing in IoT Devices. Eng. Proc. 2022, 27, 76. https://doi.org/10.3390/ecsa-9-13159
Martín-Clemente R, Zarzoso V. Unsupervised and Computationally Lightweight Spectrum Sensing in IoT Devices. Engineering Proceedings. 2022; 27(1):76. https://doi.org/10.3390/ecsa-9-13159
Chicago/Turabian StyleMartín-Clemente, Rubén, and Vicente Zarzoso. 2022. "Unsupervised and Computationally Lightweight Spectrum Sensing in IoT Devices" Engineering Proceedings 27, no. 1: 76. https://doi.org/10.3390/ecsa-9-13159
APA StyleMartín-Clemente, R., & Zarzoso, V. (2022). Unsupervised and Computationally Lightweight Spectrum Sensing in IoT Devices. Engineering Proceedings, 27(1), 76. https://doi.org/10.3390/ecsa-9-13159