A Novel Imidazole Derivative: Synthesis, Characterization and Chemosensory Ability for Ions †
Abstract
:1. Introduction
2. Material and Methods
2.1. Synthesys and Spectroscopic Characterization of Imidazole Derivative 3
2.2. Preliminar Chemosensory Studies of Imidazole Derivative 3
3. Results and Discussion
3.1. Synthesis and Spectroscopic Characterization of Imidazole Derivative 3
3.2. Preliminar Chemosensory Studies of Imidazole Derivative 3
3.2.1. Chemosensory Capacity of Imidazole Derivative 3, in ACN
3.2.2. Chemosensory Capacity of Imidazole Derivative 3, in ACN/Water (75:25)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shalini, K.; Sharma, P.K.; Kumar, N. Imidazole and Its Biological Activities: A Review. Chem. Sin. 2010, 1, 36–47. [Google Scholar]
- Zhang, L.; Peng, X.-M.; Damu, G.L.V.; Geng, R.-X.; Zhou, C.-H. Comprehensive Review in Current Developments of Imidazole-Based Medicinal Chemistry. Med. Res. Rev. 2014, 34, 340–437. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Máñez, R.; Sancenón, F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem. Rev. 2003, 103, 4419–4476. [Google Scholar] [CrossRef] [PubMed]
- Raposo, M.M.M.; García-Acosta, B.; Ábalos, T.; Calero, P.; Martínez-Máñez, R.; Ros-Lis, J.V.; Soto, J. Synthesis and Study of the Use of Heterocyclic Thiosemicarbazones as Signaling Scaffolding for the Recognition of Anions. J. Org. Chem. 2010, 75, 2922–2933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joel, C.; Livingston, D.J.; Bennie, R.B.; Jeyanthi, D.; Solomon, R.V. Designing Bifunctional Phenanthroimidazole Chromophores for Highly Selective Ratiometric Chemosensing of Cu2+/F− and Co2+/F− Ions in Organic Solvents. J. Photochem. Photobiol. A Chem. 2022, 423, 113612. [Google Scholar] [CrossRef]
- Batista, R.M.F.; Ferreira, R.C.M.; Raposo, M.M.M.; Costa, S.P.G. Novel Optical Chemosensors for Anions and Cations Based on an Amino Acid Core Functionalised with Benzimidazoles. Tetrahedron 2012, 68, 7322–7330. [Google Scholar] [CrossRef]
- Esteves, C.I.C.; Raposo, M.M.M.; Costa, S.P.G. New 2,4,5-Triarylimidazoles Based on a Phenylalanine Core: Synthesis, Photophysical Characterization and Evaluation as Fluorimetric Chemosensors for Ion Recognition. Dyes Pigm. 2016, 134, 258–268. [Google Scholar] [CrossRef]
- Esteves, C.I.C.; Ferreira, R.C.M.; Raposo, M.M.M.; Costa, S.P.G. New Fluoroionophores for Metal Cations Based on Benzo[d]oxazol-5-yl-alanine Bearing Pyrrole and Imidazole. Dyes Pigm. 2018, 151, 211–218. [Google Scholar] [CrossRef]
- Okda, H.E.; El Sayed, S.; Ferreira, R.C.M.; Costa, S.P.G.; Raposo, M.M.M.; Martínez-Máñez, R.; Sancenón, F. 4-(4,5-Diphenyl-1H-imidazole-2-yl)-N,N-dimethylaniline-Cu(II) Complex, a Highly Selective Probe for Glutathione Sensing in Water-Acetonitrile Mixtures. Dyes Pigm. 2018, 159, 45–48. [Google Scholar] [CrossRef]
- Okda, H.E.; El Sayed, S.; Otri, I.; Ferreira, R.C.M.; Costa, S.P.G.; Raposo, M.M.M.; Martínez-Máñez, R.; Sancenón, F. A Simple and Easy-to-Prepare Imidazole-Based Probe for the Selective Chromo-Fluorogenic Recognition of Biothiols and Cu(II) in Aqueous Environments. Dyes Pigm. 2019, 162, 303–308. [Google Scholar] [CrossRef]
- Okda, H.E.; El Sayed, S.; Ferreira, R.C.M.; Gonçalves, R.C.R.; Costa, S.P.G.; Raposo, M.M.M.; Martínez-Máñez, R.; Sancenón, F. N,N-Diphenylanilino-heterocyclic Aldehyde-Based Chemosensors for UV-Vis/NIR and Fluorescence Cu(II) Detection. New J. Chem. 2019, 43, 7393–7402. [Google Scholar] [CrossRef]
- Sousa, R.P.C.L.; Figueira, R.B.; Gomes, B.R.; Costa, S.P.G.; Azenha, M.; Pereira, R.F.P.; Raposo, M.M.M. Organic–Inorganic Hybrid Sol–Gel Materials Doped with a Fluorescent Triarylimidazole Derivative. RSC Adv. 2021, 11, 24613–24623. [Google Scholar] [CrossRef] [PubMed]
- Kidwai, M.; Mothsra, P.; Bansal, V.; Somvanshi, R.K.; Ethayathulla, A.S.; Dey, S.; Singh, T.P. One-Pot Synthesis of Highly Substituted Imidazoles Using Molecular Iodine: A Versatile Catalyst. J. Mol. Catal. A Chem. 2007, 265, 177–182. [Google Scholar] [CrossRef]
- Morris, J.V.; Mahaney, M.A.; Huber, J.R. Fluorescence Quantum Yield Determinations. 9,10-Diphenylanthracene as a Reference Standard in Different Solvents. J. Phys. Chem. 2002, 80, 969–974. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, N.L.P.; Costa, S.P.G.; Raposo, M.M.M. A Novel Imidazole Derivative: Synthesis, Characterization and Chemosensory Ability for Ions. Eng. Proc. 2022, 27, 8. https://doi.org/10.3390/ecsa-9-13184
Ramos NLP, Costa SPG, Raposo MMM. A Novel Imidazole Derivative: Synthesis, Characterization and Chemosensory Ability for Ions. Engineering Proceedings. 2022; 27(1):8. https://doi.org/10.3390/ecsa-9-13184
Chicago/Turabian StyleRamos, Nuna L. P., Susana P. G. Costa, and Maria Manuela M. Raposo. 2022. "A Novel Imidazole Derivative: Synthesis, Characterization and Chemosensory Ability for Ions" Engineering Proceedings 27, no. 1: 8. https://doi.org/10.3390/ecsa-9-13184
APA StyleRamos, N. L. P., Costa, S. P. G., & Raposo, M. M. M. (2022). A Novel Imidazole Derivative: Synthesis, Characterization and Chemosensory Ability for Ions. Engineering Proceedings, 27(1), 8. https://doi.org/10.3390/ecsa-9-13184