On the Role of Leaf Area Index Parameterization in Simulating the Terrestrial Carbon Fluxes of Africa Using a Regional Coupled Climate–Vegetation Model †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description and Experiment Design
2.2. Validation Data
3. Results
3.1. Ecological Indicators and Terrestrial Carbon Fluxes
3.2. Site Evaluations
4. Discussion
- Compared with the MODIS, LAImod succeeds in alleviating the LAI bias relative to the LAIorg, particularly in JJA and SON.
- LAImod reduces the SABV, FPSN and LEAFC and increases ST10 relative to LAIorg.
- LAImod improves the simulated GPP and NEE bias concerning the CARDAMOM product. Additionally, LAImod improves the simulated HR with respect to the CARDAMOM product over the Savanna regions but not over the Congo basin.
- Concerning the Fluxnet observation, the RegCM4 model performance varies with respect to the location. Yet, LAImod shows better performance than LAIorg.
5. Conclusions
- Using a nitrogen plant model of [19] to simulate the GPP and other terrestrial carbon fluxes realistically.
- Examining the influence of various environmental factors affecting the simulated terrestrial carbon fluxes as in [17].
- Using the Variable Infiltration Capacity (VIC) as a land–surface hydrology scheme and dynamic vegetation (DV) with the new LAI parameterization [6].
- Addressing the RegCM4 sensitivity to climate forcing as in [10].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, P.; Zeng, X.; Sakaguchi, K.; Monson, R.K.; Zeng, X. Terrestrial carbon cycle: Climate relations in eight CMIP5 earth system models. J. Clim. 2013, 26, 8744–8764. [Google Scholar] [CrossRef]
- Stuart, S.F.; Matson, P.A.; Mooney, H.A. Principles of Terrestrial Ecosystem Ecology; QH541.C3595 © Springer-Verlag LAImod York, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Erfanian, A.; Wang, G.; Yu, M.; Anyah, R. Multi model ensemble simulations of present and future climates over West Africa: Impacts of vegetation dynamics. J. Adv. Model. Earth Syst. 2016, 8, 1411–1431. [Google Scholar] [CrossRef]
- Wang, G.; Yu, M.; Pal, J.S.; Mei, R.; Bonan, G.B.; Levis, S.; Thornton, P.E. On the development of a coupled regional climate–vegetation model RCM–CLM–CN–DV and its validation in Tropical Africa. Clim. Dyn. 2016, 46, 515–539. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.; et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 2010, 116, G00J07. [Google Scholar] [CrossRef] [Green Version]
- Anwar, S.A.; Diallo, I. Modelling the Tropical African Climate using a state-of-the-art coupled regional climate-vegetation model. Clim. Dyn. 2022, 58, 97–113. [Google Scholar] [CrossRef]
- Bonan, G.B.; Lawrence, P.J.; Oleson, K.W.; Levis, S.; Jung, M.; Reichstein, M.; Lawrence, D.M.; Swenson, S.C. Improving canopy processes in the Community Land Model (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res. 2011, 116, G02014. [Google Scholar] [CrossRef] [Green Version]
- Thornton, P.E.; Zimmermann, N.E. An Improved Canopy Integration Scheme for a Land Surface Model with Prognostic Canopy Structure. J. Clim. 2007, 20, 3902–3923. [Google Scholar] [CrossRef]
- Yu, M.; Wang, G.; Pal, J.S. Effects of vegetation feedback on future climate change over West Africa. Clim. Dyn. 2016, 46, 3669–3688. [Google Scholar] [CrossRef]
- Anwar, S.A.; Mamadou, O.; Diallo, I.; Sylla, M.B. On the Influence of Vegetation Cover Changes and Vegetation-Runoff Systems on the Simulated Summer Potential Evapotranspiration of Tropical Africa Using RegCM4. Earth Syst. Environ. 2021, 5, 883–897. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Bloom, A.A.; Exbrayat, J.F.; Ivar, R.; Feng, L.; Williams, M. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools and residence times. Proc. Natl. Acad. Sci. USA 2016, 113, 1285–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 dataset and the ONE Flux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef] [PubMed]
- Ardö, J.; Mölder, M.; El-Tahir, B.A.; Elkhidir, H.A.M. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan. Carbon Balance Manag. 2008, 3, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merbold, L.; Ardö, J.; Arneth, A.; Scholes, R.J.; Nouvellon, Y.; De Grandcourt, A.; Archibald, S.; Bonnefond, J.M.; Boulain, N.; Brueggemann, N.; et al. Precipitation as driver of carbon fluxes in 11 African ecosystems. Biogeosciences 2009, 6, 1027–1041. [Google Scholar] [CrossRef] [Green Version]
- Anwar, S.A.; Diallo, I. A RCM investigation of the influence of vegetation status and runoff scheme on the summer Gross Primary Production of Tropical Africa. Theor. Appl. Climatol. 2021, 145, 1407–1420. [Google Scholar] [CrossRef]
- Reale, M.; Giorgi, F.; Solidoro, C.; Di Biagio, V.; Di Sante, F.; Mariotti, L.; Farneti, R.; Sannino, G. The regional Earth system Model RegCM-ES: Evaluation of the Mediterranean climate and marine biogeochemistry. J. Adv. Model. Earth. Syst. 2020, 12, e2019MS001812. [Google Scholar] [CrossRef]
- Ghimire, B.; Riley, W.J.; Koven, C.D.; Mu, M.; Randerson, J.T. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions. J. Adv. Model. Earth Syst. 2016, 8, 598–613. [Google Scholar] [CrossRef] [Green Version]
- Green, J.K.; Konings, A.G.; Alemohammad, S.H.; Berry, J.; Entekhabi, D.; Kolassa, J.; Lee, J.E.; Gentine, P. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 2017, 10, 410–414. [Google Scholar] [CrossRef] [PubMed]
Station | Latitude | Longitude | Vegetation Species | MB | SD | CORR | |||
---|---|---|---|---|---|---|---|---|---|
LAIorg | LAImod | LAIorg | LAImod | LAIorg | LAImod | ||||
Demokeya (SD-DEM) | 13.2829 | 30.4783 | Savanna | 5.7 | 4.16 | 2.5 | 2.47 | 0.46 | 0.44 |
Mongu (ZM-Mon) | −15.4391 | 23.2525 | Deciduous forest | 1.21 | 0.75 | 1.29 | 1.22 | 0.41 | 0.67 |
Tchizalamou (CG-Tch) | −4.2892 | 11.6564 | Savanna | 5.48 | 2.38 | 0.91 | 1.11 | 0.01 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, S.A.; Kim, Y. On the Role of Leaf Area Index Parameterization in Simulating the Terrestrial Carbon Fluxes of Africa Using a Regional Coupled Climate–Vegetation Model. Eng. Proc. 2023, 31, 9. https://doi.org/10.3390/ASEC2022-13839
Anwar SA, Kim Y. On the Role of Leaf Area Index Parameterization in Simulating the Terrestrial Carbon Fluxes of Africa Using a Regional Coupled Climate–Vegetation Model. Engineering Proceedings. 2023; 31(1):9. https://doi.org/10.3390/ASEC2022-13839
Chicago/Turabian StyleAnwar, Samy A., and Yeonjoo Kim. 2023. "On the Role of Leaf Area Index Parameterization in Simulating the Terrestrial Carbon Fluxes of Africa Using a Regional Coupled Climate–Vegetation Model" Engineering Proceedings 31, no. 1: 9. https://doi.org/10.3390/ASEC2022-13839
APA StyleAnwar, S. A., & Kim, Y. (2023). On the Role of Leaf Area Index Parameterization in Simulating the Terrestrial Carbon Fluxes of Africa Using a Regional Coupled Climate–Vegetation Model. Engineering Proceedings, 31(1), 9. https://doi.org/10.3390/ASEC2022-13839