Feature-Based Semi-Supervised Learning Approach to Android Malware Detection †
Abstract
:1. Introduction
2. Methodology
2.1. Android Application Packages Collection
2.2. Extracting Permissions and API Call Logs
2.3. ML Model Training and Performance Evaluation
2.4. Malware Detection Application Implementation
3. Results and Discussion
3.1. ML Model Performance Evaluation Results
3.2. Malware Detection App Results
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jkielty. Android v iOS Market Share. 2019. Available online: https://deviceatlas.com/blog/android-v-ios-market-share (accessed on 20 July 2022).
- Android. What Is Android. 2019. Available online: https://www.android.com/what-is-android/ (accessed on 1 August 2022).
- Statista. Development of New Android Malware Worldwide from 2011 to 2018. 2019. Available online: https://www.statista.com/statistics/680705/global-android-malwarevolume/ (accessed on 15 July 2022).
- Data, G. The Number of New Malicious Android Samples Worldwide in Q3 2018 Reached 3.2 Million, an Increase of 40% Year-On-Year. 2018. Available online: http://www.199it.com/archives/793849.html (accessed on 15 August 2022).
- Zhou, Y.; Jiang, X. Dissecting android malware: Characterization and evolution. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; pp. 95–109. [Google Scholar]
- B. V. Mobile Malware. 2013. Available online: https://www.webopedia.com/definitions/mobile-malware/ (accessed on 15 August 2022).
- Castillo, C. Android Malware Past, Present, and Future. McAfee White Paper, Mobile Security Working Group, ed. 2011. Available online: http://www.mcafee.com/us/resources/white-papers/wpandroid-malware-past-present-future.pdf (accessed on 15 July 2022).
- Sugunan, K.; Kumar, T.G.; Dhanya, K. Static and dynamic analysis for android malware detection. In Advances in Big Data and Cloud Computing; Springer: Singapore, 2018; pp. 147–155. [Google Scholar]
- Enck, W. Defending users against smartphone apps: Techniques and future directions. In Proceedings of the International Conference on Information Systems Security, Kolkata, India, 15–19 December 2011; pp. 49–70. [Google Scholar]
- Pan, Y.; Ge, X.; Fang, C.; Fan, Y. A systematic literature review of android malware detection using static analysis. IEEE Access 2020, 8, 116363–116379. [Google Scholar] [CrossRef]
- Fang, Y.; Gao, Y.; Jing, F.; Zhang, L. Android malware familial classification based on dex file section features. IEEE Access 2020, 8, 10614–10627. [Google Scholar] [CrossRef]
- Ahvanooey, M.T.; Li, Q.; Rabbani, M.; Rajput, A.R. A survey on smartphones security: Software vulnerabilities, malware, and attacks. arXiv 2020, arXiv:2001.09406. [Google Scholar]
- Jusoh, R.; Firdaus, A.; Anwar, S.; Osman, M.Z.; Darmawan, M.F.; Razak, M.F.A. Malware detection using static analysis in Android: A review of FeCO (features, classification, and obfuscation). PeerJ Comput. Sci. 2021, 7, e522. [Google Scholar] [CrossRef] [PubMed]
- Ayodele, T.O. Types of machine learning algorithms. New Adv. Mach. Learn. 2010, 3, 19–48. [Google Scholar]
- Webb, G.I.; Keogh, E.; Miikkulainen, R. Naïve Bayes. Encycl. Mach. Learn. 2010, 15, 713–714. [Google Scholar]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Kingsford, C.; Salzberg, S.L. What are decision trees? Nat. Biotechnol. 2008, 26, 1011–1013. [Google Scholar] [CrossRef] [PubMed]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.E.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.B.; Grout, J.; Corlay, S.; et al. Jupyter Notebooks-A Publishing Format for Reproducible Computational Workflows; IOS Press: Amsterdam, The Netherland, 2016; Volume 2016. [Google Scholar]
- Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
S.# | Prediction Score (ps) | Maliciousness Level |
---|---|---|
1 | ps ≤ 0.5 | Safe/Goodware |
2 | 0.5 > ps < 0.75 | Risky |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memon, M.; Unar, A.A.; Ahmed, S.S.; Daudpoto, G.H.; Jaffari, R. Feature-Based Semi-Supervised Learning Approach to Android Malware Detection. Eng. Proc. 2023, 32, 6. https://doi.org/10.3390/engproc2023032006
Memon M, Unar AA, Ahmed SS, Daudpoto GH, Jaffari R. Feature-Based Semi-Supervised Learning Approach to Android Malware Detection. Engineering Proceedings. 2023; 32(1):6. https://doi.org/10.3390/engproc2023032006
Chicago/Turabian StyleMemon, Mariam, Adil Ahmed Unar, Syed Saad Ahmed, Ghulam Hussain Daudpoto, and Rabeea Jaffari. 2023. "Feature-Based Semi-Supervised Learning Approach to Android Malware Detection" Engineering Proceedings 32, no. 1: 6. https://doi.org/10.3390/engproc2023032006
APA StyleMemon, M., Unar, A. A., Ahmed, S. S., Daudpoto, G. H., & Jaffari, R. (2023). Feature-Based Semi-Supervised Learning Approach to Android Malware Detection. Engineering Proceedings, 32(1), 6. https://doi.org/10.3390/engproc2023032006