Influence of Impregnation of Sodium Carbonate Catalyst on Physicochemical Properties of Biochar †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Production of BC over Na2CO3 Catalyst
2.2.2. Characterisations of Biochar
3. Results and Discussions
3.1. Physicochemical Properties of BC
3.1.1. Influence of Catalyst on Biomass Conversion, Yield, and HHV of Char
3.1.2. Surface Morphology of BC
3.1.3. BC’s Surface Area and Pore Properties
3.1.4. Functional Properties of the Produced Char Materials
3.1.5. XRD Diffraction Pattern of the Produced BC Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Zhao, B.; Liu, H.; Zhao, Y.; Li, L. Effects of Pyrolysis Temperature on Biochar’s Characteristics and Speciation and Environmental Risks of Heavy Metals in Sewage Sludge Biochars. Environ. Technol. Innov. 2022, 26, 102288. [Google Scholar] [CrossRef]
- Smets, K.; Schreurs, S.; Carleer, R.; Yperman, J. Journal of Analytical and Applied Pyrolysis Valorization of Raspberry Seed Cake by Flash and Slow Pyrolysis: Product Yield and Characterization of the Liquid and Solid Fraction. J. Anal. Appl. Pyrolysis 2014, 107, 289–297. [Google Scholar] [CrossRef]
- Smets, K.; Roukaerts, A.; Czech, J.; Reggers, G.; Schreurs, S. Slow Catalytic Pyrolysis of Rapeseed Cake: Product Yield and Characterization of the Pyrolysis Liquid. Biomass Bioenergy 2013, 57, 180–190. [Google Scholar] [CrossRef]
- Elsayed, A.; Fodah, M.; Kumar, M.; Behera, D. Bio-Oil and Biochar from Microwave-Assisted Catalytic Pyrolysis of Corn Stover Using Sodium Carbonate Catalyst. J. Energy Inst. 2021, 94, 242–251. [Google Scholar]
- Huang, Y.; Kuan, W.; Chang, C.; Tzou, Y. Catalytic and Atmospheric Effects on Microwave Pyrolysis of Corn Stover. Bioresour. Technol. 2013, 131, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Rubangakene, N.O.; Elkady, M.; Elwardany, A.; Sekiguchi, H.; Fujii, M.; Shokry, H. Novel Nano—Biosorbent Materials from Thermal Catalytic Degradation of Green Pea Waste for Cationic and Anionic Dye Decolorization. Biomass Convers. Biorefinery 2022, 1–16. [Google Scholar] [CrossRef]
- Mohd Hasan, M.H.; Bachmann, R.T.; Loh, S.K.; Manroshan, S.; Ong, S.K. Effect of Pyrolysis Temperature and Time on Properties of Palm Kernel Shell-Based Biochar. IOP Conf. Ser. Mater. Sci. Eng. 2019, 548, 012020. [Google Scholar] [CrossRef]
- Jun, W.; Mingxu, Z.; Mingqiang, C.; Fanfei, M.; Suping, Z.; Zhengwei, R.; Yongjie, Y. Catalytic Effects of Six Inorganic Compounds on Pyrolysis of Three Kinds of Biomass. Thermochim. Acta 2006, 444, 110–114. [Google Scholar]
- Angin, D. Effect of Pyrolysis Temperature and Heating Rate on Biochar Obtained from Pyrolysis of Safflower Seed Press Cake. Bioresour. Technol. 2013, 128, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Babich, I.V.; Van Der Hulst, M.; Lefferts, L.; Moulijn, J.A.; Connor, P.O.; Seshan, K. Catalytic Pyrolysis of Microalgae to High-Quality Liquid. Biomass Bioenergy 2011, 35, 3199–3207. [Google Scholar] [CrossRef]
- Dandik, L.; Ays, H. Pyrolysis of Used Sunflower Oil in the Presence of Sodium Carbonate by Using Fractionating Pyrolysis Reactor. Fuel Process. Technol. 1998, 57, 81–92. [Google Scholar] [CrossRef]
- Jalalabadi, T.; Drewery, M.; Tremain, P.; Wilkinson, J.; Moghtaderi, B.; Allen, J. The Impact of Carbonate Salts on Char Formation and Gas Evolution during the Slow Pyrolysis of Biomass, Cellulose, and Lignin. Sustain. Energy Fuels 2020, 4, 5987–6003. [Google Scholar] [CrossRef]
- Rubangakene, N.O.; Elkady, M.; Elwardany, A.; Fujii, M.; Sekiguchi, H.; Shokry, H. Effective Decontamination of Methylene Blue from Aqueous Solutions Using Novel Nano-Magnetic Biochar from Green Pea Peels. Environ. Res. 2023, 220, 115272. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Shen, C.; Xie, J.; Bu, Q. Study on Reaction Mechanism of Superior Bamboo Biochar Catalyst Production by Molten Alkali Carbonates Pyrolysis and Its Application for Cellulose Hydrolysis. Sci. Total Environ. 2020, 712, 136435. [Google Scholar] [CrossRef] [PubMed]
- Ehiomogue, P.; Ahuchaogu, I.; Ahaneku, I.E. Review of Adsorption Isotherms Models. Hunedoara 2022, 14, 87–96. [Google Scholar]
- Rubangakene, N.O.; Elwardany, A.; Fujii, M.; Sekiguchi, H.; Elkady, M.; Shokry, H. Biosorption of Congo Red Dye from Aqueous Solutions Using Pristine Biochar and ZnO Biochar from Green Pea Peels. Chem. Eng. Res. Des. 2023, 189, 636–651. [Google Scholar] [CrossRef]
- Zhao, C.; Lv, P.; Yang, L.; Xing, S.; Luo, W. Biodiesel Synthesis over Biochar-Based Catalyst from Biomass Waste Pomelo Peel. Energy Convers. Manag. 2018, 160, 477–485. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Abduljabbar, A.; Vithanage, M.; Ok, Y.S.; Ahmad, M.; Ahmad, M.; Elfaki, J.; Abdulazeem, S.S.; Al-Wabel, M.I. Biochar Production from Date Palm Waste: Charring Temperature Induced Changes in Composition and Surface Chemistry. J. Anal. Appl. Pyrolysis 2015, 115, 392–400. [Google Scholar] [CrossRef]
Parameter | BET Surface Area (m2 g−1) | Average Pore Diameter (nm) | Total Pore Volume (cm3 g−1) |
---|---|---|---|
R0% | 1.007 | 174.090 | 0.044 |
R10% | 3.005 | 16.002 | 0.012 |
R20% | 11.510 | 15.643 | 0.045 |
R30% | 17.700 | 9.283 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubangakene, N.O.; Elwardany, A.; Fujii, M.; Sekiguchi, H.; Shokry, H. Influence of Impregnation of Sodium Carbonate Catalyst on Physicochemical Properties of Biochar. Eng. Proc. 2023, 37, 77. https://doi.org/10.3390/ECP2023-14688
Rubangakene NO, Elwardany A, Fujii M, Sekiguchi H, Shokry H. Influence of Impregnation of Sodium Carbonate Catalyst on Physicochemical Properties of Biochar. Engineering Proceedings. 2023; 37(1):77. https://doi.org/10.3390/ECP2023-14688
Chicago/Turabian StyleRubangakene, Norbert Onen, Ahmed Elwardany, Manabu Fujii, Hidetoshi Sekiguchi, and Hassan Shokry. 2023. "Influence of Impregnation of Sodium Carbonate Catalyst on Physicochemical Properties of Biochar" Engineering Proceedings 37, no. 1: 77. https://doi.org/10.3390/ECP2023-14688
APA StyleRubangakene, N. O., Elwardany, A., Fujii, M., Sekiguchi, H., & Shokry, H. (2023). Influence of Impregnation of Sodium Carbonate Catalyst on Physicochemical Properties of Biochar. Engineering Proceedings, 37(1), 77. https://doi.org/10.3390/ECP2023-14688