Hints of Earlier and Other Creation: Unsupervised Machine Learning in Financial Time-Series Analysis †
Abstract
:- The sea is the land’s edge also, the granite
- Into which it reaches, the beaches where it tosses
- Its hints of earlier and other creation:
- The starfish, the horseshoe crab, the whale’s backbone;
- The pools where it offers to our curiosity
- The more delicate algae and the sea anemone.
1. Introduction
2. Materials and Methods
2.1. Materials
- Raw energy commodities: crude oil (Cushing and Brent) and natural gas;
- Refined energy commodities: gasoline, diesel/gasoil, and heating oil;
- Agricultural commodities: corn, soybeans, and sugar;
- Precious metals: gold, silver, platinum, and palladium;
- Base metals: copper, tin, nickel, and aluminum.
2.2. Methods
3. Anticipated Results
4. Discussion
4.1. Commodity-Specific Insights
4.2. Prelude and Performance: Unsupervised Machine Learning and Time-Series Forecasting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eliot, T.S. The dry salvages. In Four Quartets; Reprinted 1971; Houghton Mifflin Harcourt: New York, NY, USA, 1943; pp. 35–48. [Google Scholar]
- Chen, J.M.; Rehman, M.U.; Vo, X.V. Clustering commodity markets in space and time: Clarifying returns, volatility, and trading regimes through unsupervised machine learning. Resour. Policy 2021, 73, 102162. [Google Scholar] [CrossRef]
- Chen, J.M.; Rehman, M.U. A pattern new in every moment: The temporal clustering of markets for crude oil, refined fuels, and other commodities. Energies 2021, 14, 6099. [Google Scholar] [CrossRef]
- Aguilera, R.F.; Radetzki, M. The synchronized and exceptional price performance of oil and gold: Explanations and prospects. Resour. Policy 2017, 54, 81–87. [Google Scholar] [CrossRef]
- Reboredo, J.C.; Rivera-Castro, M.A.; Ugolini, A. Downside and upside risk spillovers between exchange rates and stock prices. J. Bank. Financ. 2016, 62, 76–96. [Google Scholar] [CrossRef]
- Rehman, M.U.; Shahzad, S.J.H.; Uddin, G.S.; Hedström, A. Precious metal returns and oil shocks: A time varying connectedness approach. Resour. Policy 2018, 58, 77–89. [Google Scholar] [CrossRef]
- Liu, C.; Naeem, M.A.; Rehman, M.U.; Farid, S.; Shahzad, S.J.H. Oil as hedge, safe-haven, and diversifier for conventional cur- rencies. Energies 2020, 13, 4354. [Google Scholar] [CrossRef]
- Umar, Z.; Jareño, F.; Escribano, A. Oil price shocks and the return and volatility spillover between industrial and precious metals. Energy Econ. 2021, 99, 105291. [Google Scholar] [CrossRef]
- Rubbaniy, G.; Khalid, A.A.; Syriopoulos, K.; Samitas, A. Safe-haven properties of soft commodities during times of COVID-19. J. Commod. Mark. 2022, 27, 100223. [Google Scholar] [CrossRef]
- Talbot, J.M. Tropical commodity chains, forward integration strategies and international inequality: Coffee, cocoa and tea. Rev. Int. Pol. Econ. 2002, 9, 701–734. [Google Scholar] [CrossRef]
- Liu, J.; Han, J. Spectral clustering. In Data Clustering: Algorithms and Applications; Aggarwal, C.C., Reddy, C.K., Eds.; Chapman and Hall, CRC Press: Boca Raton, FL, USA, 2014; pp. 177–200. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, H. Segmentation of 3D meshes through spectral clustering. In Proceedings of the 12th Pacific Conference on Computer Graphics and Applications, Seoul, Republic of Korea, 6–8 October 2004; pp. 298–305. [Google Scholar] [CrossRef] [Green Version]
- Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intel. 2002, 24, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodenhofer, U.; Kothmeier, A.; Hochreiter, S. APCluster: An R package for affinity propagation clustering. Bioinformatics 2011, 27, 2463–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, F.; Jiao, L.C.; Shi, J.; Wang, F.; Gong, M. Fast affinity propagation clustering: A multilevel approach. Pattern Recog. 2012, 45, 474–486. [Google Scholar] [CrossRef]
- Murtagh, F. A survey of recent advances in hierarchical clustering algorithms. Comput. J. 1983, 26, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Soni, K.G.; Patel, A. Comparative analysis of k-means and k-medoids algorithm on IRIS data. Int. J. Comput. Intell. Res. 2017, 13, 899–906. Available online: https://www.ripublication.com/ijcir17/ijcirv13n5_21.pdf (accessed on 28 June 2023).
- Van der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014, 15, 3221–3245. Available online: https://jmlr.org/papers/v15/vandermaaten14a.html (accessed on 28 June 2023).
- Van der Maaten, L.; Hinton, G. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. Available online: https://www.jmlr.org/papers/v9/vandermaaten08a.html (accessed on 28 June 2023).
- Van der Maaten, L.; Hinton, G. Visualizing non-metric similarities in multiple maps. Mach. Learn. 2012, 87, 33–55. [Google Scholar] [CrossRef] [Green Version]
- Kilian, L. The economic effects of energy price shocks. J. Econ. Lit. 2008, 46, 871–909. [Google Scholar] [CrossRef] [Green Version]
- Federer, J.P. Oil price volatility and the macroeconomy. J. Macroecon. 1996, 18, 1–26. [Google Scholar] [CrossRef]
- Sim, N.; Zhou, H. Oil prices, stock return, and the dependence between their quantiles. J. Bank. Financ. 2015, 55, 1–8. [Google Scholar] [CrossRef]
- Joëts, M.; Mignon, V.; Razafindrabe, T. Does the volatility of commodity prices reflect macroeconomic uncertainty? Energy Econ. 2017, 68, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.D. What is an oil shock? J. Econom. 2003, 113, 363–398. [Google Scholar] [CrossRef]
- Blair, B.F.; Rezek, J.P. The effects of hurricane Katrina on price pass-through for Gulf Coast gasoline. Econ. Lett. 2008, 98, 229–234. [Google Scholar] [CrossRef]
- Kaiser, M.J.; Yu, Y.; Jablonowski, C.J. Modeling lost production from destroyed platforms in the 2004–2005 Gulf of Mexico hurricane seasons. Energy 2009, 34, 1156–1171. [Google Scholar] [CrossRef]
- Ji, Q.; Guo, J.-F. Oil price volatility and oil-related events: An internet concern study perspective. Appl. Energy 2015, 256–264. [Google Scholar] [CrossRef]
- Morgan, C.W.; Rayner, A.J.; Ennew, C.T. Price instability and commodity future markets. World Dev. 1994, 22, 1729–1736. [Google Scholar] [CrossRef]
- Vo, L.H.; Le, T.-H. Eatery, energy environment and economic system, 1970-2017: Understanding volatility spillover patterns a global sample. Energy Econ. 2021, 100, 105391. [Google Scholar] [CrossRef]
- Rafiq, S.; Ruhul Salim, R.; Bloch, H. Impact of crude oil volatility on economic activities: An empirical investigation in the Thai economy. Resour. Policy 2009, 34, 121–132. [Google Scholar] [CrossRef]
- Filis, G.; Degiannakis, S.; Floros, C. Dynamic correlation between stock market and oil prices: The case of oil-importing and oil- exporting countries. Int. Rev. Financ. Anal. 2011, 20, 152–164. [Google Scholar] [CrossRef]
- Guesmi, K.; Fattoum, S. Return and volatility transmission between oil prices and oil-exporting and oil-importing countries. Econ. Model. 2014, 38, 305–310. [Google Scholar] [CrossRef]
- Kumar, S.; Khalfaoui, R.; Tiwari, A.K. Does geopolitical risk improve the directional predictability from oil to stock returns? Evidence from oil-exporting and oil-importing countries. Resour. Policy 2021, 74, 102253. [Google Scholar] [CrossRef]
- Ebrahim, Z.; Inderwildi, O.R.; King, D.A. Macroeconomic impacts of oil price volatility: Mitigation and resilience. Front. Energy 2014, 8, 9–24. [Google Scholar] [CrossRef]
- Guo, H.; Kliesen, K.L. Oil price volatility and U.S. macroeconomic activity. Fed. Reserve Bank St. Louis Rev. 2005, 87, 669–683. Available online: https://research.stlouisfed.org/publications/review/2005/11/01/oil-price-volatility-and-u-s-macroeconomic-activity (accessed on 28 June 2023). [CrossRef]
- Mork, K.A. Oil and the macroeconomy when prices go up and down: An extension of Hamilton’s results. J. Pol. Econ. 1989, 97, 740–744. [Google Scholar] [CrossRef]
- Borenstein, S.; Cameron, A.C.; Gilbert, R. Do gasoline prices respond asymmetrically to crude oil price changes? Q. J. Econ. 1997, 112, 305–339. [Google Scholar] [CrossRef] [Green Version]
- Douglas, C.; Herrera, A.M. Why are gasoline prices sticky? A test of alternative models of price adjustment. J. Appl. Econom. 2010, 25, 903–928. [Google Scholar] [CrossRef] [Green Version]
- Douglas, C.C.; Herrera, A.M. Dynamic pricing and asymmetries in retail gasoline markets: What can they tell us about price stickiness? Econ. Lett. 2014, 122, 247–252. [Google Scholar] [CrossRef]
- Karrenbrock, J.D. The behavior of retail gasoline prices: Symmetric or not? Fed. Reserve Bank St. Louis Rev. 1991, 73, 19–29. Available online: https://research.stlouisfed.org/publications/review/1991/07/01/the-behavior-of-retail-gasoline-prices-symmetric-or-not (accessed on 28 June 2023). [CrossRef] [Green Version]
- Eleftheriou, K.; Nijkamp, P.; Polemis, M.L. Asymmetric price adjustments in US gasoline markets: Impacts of spatial dependence on the “rockets and feathers” hypothesis. Reg. Stud. 2019, 53, 667–680. [Google Scholar] [CrossRef]
- Galeotti, M.; Lanza, A.; Manera, M. Rockets and feathers revisited: An international comparison on European gasoline markets. Energy Econ. 2003, 25, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Tappata, M. Rockets and feathers: Understanding asymmetric pricing. Rand J. Econ. 2009, 40, 673–687. [Google Scholar] [CrossRef]
- Lewis, M.; Noel, M. The speed of gasoline price response in markets with and without Edgeworth cycles. Rev. Econ. Stat. 2011, 93, 672–682. [Google Scholar] [CrossRef] [Green Version]
- Noel, M.D.; Chu, L. Forecasting gasoline prices in the presence of Edgeworth price cycles. Energy Econ. 2015, 51, 204–214. [Google Scholar] [CrossRef]
- Maskin, E.; Tirole, J. A theory of dynamic oligopoly, II: Price competition, kinked demand curves, and Edgeworth cycles. Econometrica 1988, 56, 571–599. [Google Scholar] [CrossRef] [Green Version]
- Fershtman, C.; Fishman, A. Price cycles and booms: Dynamic search equilibrium. Am. Econ. Rev. 1992, 82, 1221–1233. Available online: https://www.jstor.org/stable/2117475 (accessed on 28 June 2023).
- Lewis, M.S. Asymmetric price adjustment and consumer search: An examination of the retail gasoline market. J. Econ. Manag. Strategy 2011, 20, 409–449. [Google Scholar] [CrossRef] [Green Version]
- Bachmeier, L.J.; Griffin, J.M. New evidence on asymmetric gasoline price responses. Rev. Econ. Stat. 2003, 85, 772–776. [Google Scholar] [CrossRef]
- Bremmer, D.S.; Kesselring, R.G. The relationship between U.S. retail gasoline and crude oil prices during the Great Recession: “Rockets and feathers” or “balloons and rocks” behavior? Energy Econ. 2016, 55, 200–210. [Google Scholar] [CrossRef]
- Apergis, N.; Vouzavalis, G. Asymmetric pass through of oil prices to gasoline prices: Evidence from a new country sample. Energy Policy 2018, 114, 519–528. [Google Scholar] [CrossRef]
- Koirala, K.H.; Mishra, A.K.; D’Antoni, J.M.; Mehlhorn, J.E. Energy prices and agricultural commodity prices: Testing correlation using copulas method. Energy 2015, 81, 430–436. [Google Scholar] [CrossRef]
- Roman, M.; Górecka, A.; Domagała, J. The linkages between crude oil and food prices. Energies 2020, 13, 6545. [Google Scholar] [CrossRef]
- Serra, T. Volatility spillovers between food and energy markets: A semiparametric approach. Energy Econ. 2011, 33, 1155–1164. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Tiwari, A.K.; Raheem, I.D.; Hille, E. Time-varying dependence structure between oil and agricultural commodity markets: A dependence-switching CoVaR copula approach. Resour. Policy 2021, 72, 102049. [Google Scholar] [CrossRef]
- Lucotte, Y. Co-movements between crude oil and food prices: A post-commodity boom perspective. Econ. Lett. 2016, 147, 142–147. [Google Scholar] [CrossRef]
- Ferrer, R.; Shahzad, S.J.H.; López, R.; Jareño, F. Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices. Energy Econ. 2018, 76, 1–20. [Google Scholar] [CrossRef]
- Carpio, L.G.T. The effects of oil price volatility on ethanol, gasoline, and sugar price forecasts. Energy 2019, 181, 1012–1022. [Google Scholar] [CrossRef]
- Reboredo, J.C. Do food and oil prices co-move? Energy Policy 2012, 49, 456–467. [Google Scholar] [CrossRef]
- Du, X.; Yu, C.L.; Hayes, D.J. Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis. Energy Econ. 2011, 33, 497–503. [Google Scholar] [CrossRef]
- Cabrera, B.L.; Schulz, F. Volatility linkages between energy and agricultural commodity prices. Energy Econ. 2016, 54, 190–203. [Google Scholar] [CrossRef] [Green Version]
- Enciso, S.R.A.; Fellmann, T.; Dominguez, I.P.; Santini, F. Abolishing biofuel policies: Possible impacts on agricultural price lev- els, price variability and global food security. Food Policy 2016, 61, 9–26. [Google Scholar] [CrossRef]
- Gardebroek, C.; Hernandez, M.A. Do energy prices stimulate food price volatility? Examining volatility transmission between US oil, ethanol and corn markets. Energy Econ. 2013, 40, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Karyotis, C.; Alijani, S. Soft commodities and the global financial crisis: Implications for the economy, resources and institutions. Res. Int. Bus. Financ. 2016, 37, 350–359. [Google Scholar] [CrossRef]
- McPhail, L.L.; Babcock, B.A. Impact of US biofuel policy on US corn and gasoline price variability. Energy 2012, 37, 505–513. [Google Scholar] [CrossRef]
- Szucs, D.; Ioannidis, J.P.A. When null hypothesis significance testing is unsuitable for research: A reassessment. Front. Hum. Neurosci. 2017, 11, 390. [Google Scholar] [CrossRef] [Green Version]
- Wasserstein, R.L.; Lazar, N.A. The ASA statement on p-values: Context, process, and purpose. Am. Stat. 2016, 70, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Cohen, H.W. P values: Use and misuse in medical literature. Am. J. Hypertens. 2011, 24, 18–23. [Google Scholar] [CrossRef]
- Quintana, D.S.; Williams, D.R. Bayesian alternatives for common null-hypothesis significance tests in psychiatry: A non-tech- nical guide using JASP. BMC Psychiatry 2018, 18, 178. [Google Scholar] [CrossRef] [Green Version]
- Farasat, A.; Gross, G.; Nagi, R.; Nikolaev, A.G. Social network analysis with data fusion. IEEE Trans. Comput. Soc. Syst. 2016, 3, 88–99. [Google Scholar] [CrossRef]
- Newman, N.C.; Porter, A.L.; Newman, D.; Trumbach, C.C.; Bolan, S.D. Comparing methods to extract technical content for technological intelligence. J. Eng. Technol. Manag. 2014, 32, 97–109. [Google Scholar] [CrossRef]
- Taber, P.; Staes, C.J.; Phengphoo, S.; Rocha, E.; Lam, A.; del Fiol, G.; Maviglia, S.M.; Rocha, R.A. Developing a sampling method and preliminary taxonomy for classifying COVID-19 public health guidance for healthcare organizations and the general public. J. Biomed. Inform. 2021, 120, 103852. [Google Scholar] [CrossRef]
- Salisu, A.; Fasanya, I.O. Modelling oil price volatility with structural breaks. Energy Policy 2013, 52, 554–562. [Google Scholar] [CrossRef]
- Eldredge, N.; Gould, S.J. Punctuated equilibria: An alternative to phyletic gradualism. In Models in Paleobiology; Schopf, T.J.M., Ed.; Freeman, Cooper & Co.: San Francisco, CA, USA, 1972; pp. 82–115. [Google Scholar]
- Black, F. How to use the holes in Black-Scholes. J. Appl. Corp. Financ. 1989, 1, 67–73. [Google Scholar] [CrossRef]
- Cox, J.C.; Ross, S.A. The valuation of options for alternative stochastic processes. J. Financ. Econ. 1976, 3, 145–166. [Google Scholar] [CrossRef]
- Kou, S.G. A jump-diffusion model for option pricing. Manag. Sci. 2002, 48, 1086–1101. [Google Scholar] [CrossRef] [Green Version]
- Merton, R.C. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 1976, 3, 125–144. [Google Scholar] [CrossRef] [Green Version]
- Crosby, J. A multi-factor jump-diffusion model for commodities. Quant. Financ. 2008, 8, 181–200. [Google Scholar] [CrossRef] [Green Version]
- Da Fonseca, J.; Ignatieva, K. Jump activity analysis for affine jump-diffusion models: Evidence from the commodity market. J. Bank. Financ. 2019, 99, 45–62. [Google Scholar] [CrossRef]
- Hilliard, J.E.; Jorge, A.; Reis, J.A. Jump processes in commodity futures prices and options pricing. Am. J. Agric. Econ. 1999, 81, 273–286. [Google Scholar] [CrossRef]
- Schmitz, A.; Wang, Z.; Kimn, J.H. A jump diffusion model for agricultural commodities with Bayesian analysis. J. Futures Mark. 2014, 34, 235–260. [Google Scholar] [CrossRef]
- Grenander, U.; Miller, M.I. Representations of knowledge in complex systems. J. R. Stat. Soc. B 1994, 56, 549–603. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Zhao, Y. Forecasting of PM2.5 concentration in Beijing using hybrid deep learning framework based on attention mechanism. Appl. Sci. 2022, 12, 11155. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, Y.; Ren, Z. Deep learning-based PM2.5 long time-series prediction by fusing multisource data—A case study of Beijing. Atmosphere 2023, 14, 340. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, B.; Dong, A.; He, J.; Xu, Z.; Chen, S.X. Cautionary tales on air-quality improvement in Beijing. Proc. R. Soc. A 2017, 473, 20170457. [Google Scholar] [CrossRef] [PubMed]
- Méndez, M.; Merayo, M.G.; Núñez, M. Machine learning algorithms to forecast air quality: A survey. Artif. Intell. Rev. 2023. [Google Scholar] [CrossRef]
- Forster, M. Hegel’s dialectical method. In The Cambridge Companion to Hegel; Beiser, F.C., Ed.; Cambridge University Press: Cambridge, UK, 1993; pp. 130–170. [Google Scholar]
- Rosen, M. Hegel’s Dialectic and Its Criticism; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Chauvet, M. An economic characterization of business cycle dynamics with factor structure and regime switching. Int. Econ. Rev. 1998, 39, 969–996. [Google Scholar] [CrossRef] [Green Version]
- Chauvet, M.; Piger, J.M. Identifying business cycle turning points in real time. Rev. Fed. Reserve Bank St. Louis 2003, 85, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Chauvet, M.; Piger, J. A comparison of the real-time performance of business cycle dating methods. J. Bus. Econ. Stat. 2008, 26, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R. Ecological economics: Reintegrating the study of humans and nature. Ecol. Appl. 1996, 6, 978–990. [Google Scholar] [CrossRef] [Green Version]
- Alabert, A.; Berti, A.; Caballero, R.; Ferrante, M. No-free-lunch theorems in the continuum. Theor. Comput. Sci. 2015, 600, 98–106. [Google Scholar] [CrossRef]
- Ho, Y.C.; Pepyne, D.L. Simple explanation of the no-free-lunch theorem and its implications. J. Optim. Theory Appl. 2002, 115, 549–570. [Google Scholar] [CrossRef]
- Wolpert, D.H. The lack of a priori distinctions between learning algorithms. Neural Comput. 1996, 8, 1341–1390. [Google Scholar] [CrossRef]
- Hamming, R.W. The unreasonable effectiveness of mathematics. Am. Math. Mon. 1980, 87, 81–90. [Google Scholar] [CrossRef]
- Wigner, E. The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pure Appl. Math. 1960, 13, 1–14. [Google Scholar] [CrossRef]
- Velupillai, K.V. The unreasonable ineffectiveness of mathematics in economics. Camb. J. Econ. 2005, 29, 849–872. [Google Scholar] [CrossRef] [Green Version]
- Halevy, A.; Norvig, P.; Pereira, F. The unreasonable effectiveness of data. IEEE Intell. Syst. 2009, 24, 8–12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.M.; Agiropoulos, C. Hints of Earlier and Other Creation: Unsupervised Machine Learning in Financial Time-Series Analysis. Eng. Proc. 2023, 39, 42. https://doi.org/10.3390/engproc2023039042
Chen JM, Agiropoulos C. Hints of Earlier and Other Creation: Unsupervised Machine Learning in Financial Time-Series Analysis. Engineering Proceedings. 2023; 39(1):42. https://doi.org/10.3390/engproc2023039042
Chicago/Turabian StyleChen, James Ming, and Charalampos Agiropoulos. 2023. "Hints of Earlier and Other Creation: Unsupervised Machine Learning in Financial Time-Series Analysis" Engineering Proceedings 39, no. 1: 42. https://doi.org/10.3390/engproc2023039042
APA StyleChen, J. M., & Agiropoulos, C. (2023). Hints of Earlier and Other Creation: Unsupervised Machine Learning in Financial Time-Series Analysis. Engineering Proceedings, 39(1), 42. https://doi.org/10.3390/engproc2023039042