A Novel Unconstrained Geometric BINAR(1) Model †
Abstract
:1. Introduction
2. The Non-Stationary Unconstrained BINAR(1) with Geometric Marginals (NSUBINAR(1)GEOM)
- (a)
- is geometric such that . Hence, E( and Var(, where with is a vector of covariates influencing both and , with corresponding regression coefficients for and .
- (b)
- ∗ is the binomial thinning operator [4] such that with . Hence, and .
- (c)
3. Estimation Method
Forecasting Equations
4. Simulation Study
5. Analysing the Time Series of Day and Night Road Accidents in Mauritius
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pedeli, X.; Karlis, D. Bivariate INAR(1) Models; Technical Report; Athens University of Economics: Athens, Greece, 2009. [Google Scholar]
- Pedeli, X.; Karlis, D. A bivariate INAR(1) process with application. Stat. Model. Int. J. 2011, 11, 325–349. [Google Scholar] [CrossRef]
- McKenzie, E. Autoregressive moving-average processes with Negative Binomial and geometric marginal distributions. Adv. Appl. Probab. 1986, 18, 679–705. [Google Scholar] [CrossRef]
- Steutel, F.; Van Harn, K. Discrete analogues of self-decomposability and stability. Ann. Probab. 1979, 7, 3893–3899. [Google Scholar] [CrossRef]
- Pedeli, X.; Karlis, D. Some properties of multivariate INAR(1) processes. Comput. Stat. Data Anal. 2013, 67, 213–225. [Google Scholar] [CrossRef]
- Ristic, M.; Nastic, A.; Jayakumar, K.; Bakouch, H. A bivariate INAR(1) time series model with geometric marginals. Appl. Math. Lett. 2012, 25, 481–485. [Google Scholar] [CrossRef] [Green Version]
- Nastic, A.; Ristic, M.; Popovic, P. Estimation in a bivariate integer-valued autoregressive process. Commun.-Stat.-Theory Methods 2016, 45, 5660–5678. [Google Scholar] [CrossRef]
- Mamode Khan, N.; Sunecher, Y.; Jowaheer, V. Modelling a Non-Stationary BINAR(1) Poisson Process. J. Stat. Comput. Simul. 2016, 86, 3106–3126. [Google Scholar] [CrossRef]
- Sunecher, Y.; Mamodekhan, N.; Jowaheer, V. A GQL estimation approach for analysing non-stationary over-dispersed BINAR(1) time series. J. Stat. Comput. Simul. 2017, 87, 1911–1924. [Google Scholar] [CrossRef]
- Nastic, A.; Laketa, P.; Ristic, M. Random environment integer-valued autoregressive process. J. Time Ser. Anal. 2016, 37, 267–287. [Google Scholar] [CrossRef]
- Sutradhar, B.; Jowaheer, V.; Rao, P. Remarks on asymptotic efficient estimation for regression effects in stationary and non-stationary models for panel count data. Braz. J. Probab. Stat. 2014, 28, 241–254. [Google Scholar] [CrossRef]
- Jowaheer, V.; Mamode Khan, N.; Sunecher, Y. A non-stationary BINAR(1) process with negative binomial innovations for modeling the number of goals in the first and second half: The case study of Arsenal Football Club. Commun.-Stat.-Case Stud. Data Anal. Appl. 2017, 2, 21–33. [Google Scholar] [CrossRef]
- Ristic, M.; Bakouch, H.; Nastic, A. A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. J. Stat. Plan. Inference 2009, 136, 2218–2226. [Google Scholar] [CrossRef]
- Sunecher, Y.; Mamodekhan, N.; Jowaheer, V. Estimating the parameters of a BINMA Poisson model for a non-stationary bivariate time series. Commun. Stat. Simul. Comput. 2016, 46, 6803–6827. [Google Scholar] [CrossRef]
T | Methods | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.9 | 0.9 | 100 | GQL | 0.4823 | 0.4870 | 0.8876 | 0.8840 | 0.8819 | 0.8847 | 0.4859 | 0.4847 | 0.9815 |
(0.0910) | (0.0931) | (0.0977) | (0.0946) | (0.1163) | (0.1115) | (0.1125) | (0.1153) | |||||
500 | GQL | 0.4923 | 0.4914 | 0.8950 | 0.8917 | 0.8942 | 0.8920 | 0.4945 | 0.4940 | 0.9909 | ||
(0.0517) | (0.0512) | (0.0547) | (0.0585) | (0.0649) | (0.0625) | (0.0623) | (0.0630) | |||||
1000 | GQL | 0.4991 | 0.4988 | 0.8960 | 0.8981 | 0.8984 | 0.8994 | 0.5004 | 0.5006 | 0.9979 | ||
(0.0122) | (0.0171) | (0.0194) | (0.0146) | (0.0271) | (0.0224) | (0.0209) | (0.0237) | |||||
0.3 | 0.9 | 100 | GQL | 0.4894 | 0.4891 | 0.8870 | 0.8840 | 0.2856 | 0.8868 | 0.4899 | 0.4888 | 0.9826 |
(0.0969) | (0.0977) | (0.0915) | (0.0959) | (0.1133) | (0.1172) | (0.1128) | (0.1119) | |||||
500 | GQL | 0.4926 | 0.4927 | 0.8944 | 0.8959 | 0.2915 | 0.8928 | 0.4965 | 0.4940 | 0.9918 | ||
(0.0526) | (0.0556) | (0.0507) | (0.0512) | (0.0681) | (0.0694) | (0.0671) | (0.0631) | |||||
1000 | GQL | 0.4995 | 0.4975 | 0.8969 | 0.8994 | 0.2988 | 0.8963 | 0.5008 | 0.5011 | 0.9995 | ||
(0.0137) | (0.0175) | (0.0111) | (0.0141) | (0.0213) | (0.0293) | (0.0251) | (0.0221) | |||||
0.3 | 0.3 | 100 | GQL | 0.4823 | 0.4870 | 0.8804 | 0.8896 | 0.2812 | 0.2834 | 0.4854 | 0.4835 | 0.9819 |
(0.0981) | (0.0911) | (0.0931) | (0.0928) | (0.1169) | (0.1160) | (0.1135) | (0.1197) | |||||
500 | GQL | 0.4929 | 0.4942 | 0.8910 | 0.8935 | 0.2964 | 0.2931 | 0.4920 | 0.4915 | 0.9913 | ||
(0.0594) | (0.0589) | (0.0562) | (0.0580) | (0.0614) | (0.0621) | (0.0677) | (0.0681) | |||||
1000 | GQL | 0.4956 | 0.4992 | 0.8987 | 0.8990 | 0.2988 | 0.2980 | 0.5004 | 0.5001 | 0.9966 | ||
(0.0152) | (0.0125) | (0.0135) | (0.0133) | (0.0241) | (0.0208) | (0.0219) | (0.0211) |
Model | Time Series | Intercept | NS | SC | PO | RA | |
---|---|---|---|---|---|---|---|
Day Accidents | 2.5353 | −0.0815 | −0.0942 | −0.0934 | 0.0760 | 1.8475 | |
s.e | (0.0633) | (0.0396) | (0.0456) | (0.0397) | (0.0289) | (0.0948) | |
NSCBINAR(1)NB | Night Accidents | 0.9272 | −0.0790 | −0.0671 | −0.0824 | 0.0943 | 0.8965 |
s.e | (0.0742) | (0.0245) | (0.0213) | (0.0329) | (0.0330) | (0.0980) | |
Day Accidents | 2.4445 | −0.0824 | −0.0952 | −0.0955 | 0.0668 | ||
s.e | (0.0560) | (0.0273) | (0.0314) | (0.0215) | (0.0164) | ||
NSUBINAR(1)GEOM | Night Accidents | 0.9106 | −0.0714 | −0.0572 | −0.0747 | 0.0817 | |
s.e | (0.0710) | (0.0180) | (0.0157) | (0.0260) | (0.0205) | ||
Day Accidents | 2.413 | −0.0929 | −0.0866 | −0.0961 | 0.0852 | ||
s.e | (0.0958) | (0.0353) | (0.0385) | (0.0419) | (0.0342) | ||
NSCBINAR(1)GEOM | Night Accidents | 0.9623 | −0.0876 | −0.0894 | −0.0785 | 0.0899 | |
s.e | (0.0952) | (0.0367) | (0.0387) | (0.0375) | (0.0345) |
Model | Time Series | |||
---|---|---|---|---|
Day Accidents | 0.2620 | 0.0065 | ||
s.e | ||||
NSCBINAR(1)NB | Night Accidents | 0.2941 | ||
s.e | ||||
Day Accidents | 0.2748 | 0.0728 | 0.0025 | |
s.e | (0.0346) | (0.0234) | ||
NSUBINAR(1)GEOM | Night Accidents | 0.2438 | 0.0563 | |
s.e | (0.0388) | (0.0191) | ||
Day Accidents | 0.2145 | 0.0034 | ||
s.e | ||||
NSCBINAR(1)GEOM | Night Accidents | 0.2442 | ||
s.e |
Model | RMSE | RMSE | MAD | MAD |
---|---|---|---|---|
NSCBINAR(1)NB | 0.132 | 0.141 | 0.109 | 0.120 |
NSUBINAR(1)GEOM | 0.120 | 0.129 | 0.098 | 0.104 |
NSCBINAR(1)GEOM | 0.196 | 0.189 | 0.155 | 0.144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuvraj, S.; Naushad, M.K. A Novel Unconstrained Geometric BINAR(1) Model. Eng. Proc. 2023, 39, 52. https://doi.org/10.3390/engproc2023039052
Yuvraj S, Naushad MK. A Novel Unconstrained Geometric BINAR(1) Model. Engineering Proceedings. 2023; 39(1):52. https://doi.org/10.3390/engproc2023039052
Chicago/Turabian StyleYuvraj, Sunecher, and Mamode Khan Naushad. 2023. "A Novel Unconstrained Geometric BINAR(1) Model" Engineering Proceedings 39, no. 1: 52. https://doi.org/10.3390/engproc2023039052
APA StyleYuvraj, S., & Naushad, M. K. (2023). A Novel Unconstrained Geometric BINAR(1) Model. Engineering Proceedings, 39(1), 52. https://doi.org/10.3390/engproc2023039052