Development of Methodology for the Evaluation of Solar Energy through Hybrid Models for the Energy Sector †
Abstract
:1. Introduction
- A technique that combines PV power prediction methods for a short-term scale for large amounts of data.
- The development of a model for the prediction of photovoltaic energy through neural networks that will have as input information the data of an embedding model with delay coordinates and will be compared with a clear sky model and a SARIMA.
- Finally, the proposed model will be validated with real data from a photovoltaic plant.
2. Materials and Methods
2.1. Data Acquisition
2.2. Clear Sky Model
2.3. Autoregressive Model of Order Moving Averages with Seasonality (P, D, Q)s
2.4. Time Delay Coordinate Embedding Model
2.5. Artificial Neural Networks
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA. Renawable Electricity. Available online: https://www.iea.org/fuels-and-technologies/electricity (accessed on 3 March 2023).
- International Renewable Energy Agency. Available online: https://www.irena.org/Energy-Transition/Technology/Solar-energy (accessed on 1 April 2023).
- IEA. Solar. Available online: https://www.iea.org/fuels-and-technologies/solar (accessed on 3 March 2023).
- Gürel, A.E.; Agbulut, Ü.; Bakır, H.; Ergün, A.; Yıldız, G. A state of art review on estimation of solar radiation with various models. Heliyon 2023, 9, e13167. [Google Scholar] [CrossRef]
- UNFCCC. UN Climate Change Quarterly. Available online: https://unfccc.int/documents?f%5B0%5D=conference%3A4526 (accessed on 2 April 2023).
- Parasad, A.A.; Kay, M. Evaluation of simulated solar irradiance on days of high intermittency using WRF-Solar. Sol. Energy 2020, 13, 2200–2217. [Google Scholar]
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Pison, F.J.M.-D.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Sol. Energy 2016, 136, 78–111. [Google Scholar] [CrossRef]
- Khalid, M.; Savkin, A. A method for short-term wind power prediction with multiple observation points. IEEE Trans. Power Syst. 2012, 27, 579–586. [Google Scholar] [CrossRef]
- Chen, N.; Qian, Z.; Nabney, I.; Meng, X. Wind power forecasts using Gaussian processes and numerical weather prediction. IEEE Trans. Power Syst. 2014, 29, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Dowell, J.; Pinson, P. Very short-term probabilistic wind power forecasts by sparse vector autoregression. IEEE Trans. Smart Grid. 2016, 7, 763–770. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Bai, M.; Yang, X.; Liu, J.; Yu, D.; Chang, J. Short-term probabilistic predictions of wind multi-parameter based on one-dimensional convolutional neural network with attention mechanism and multivariate copula distribution estimation. Energy 2021, 234, 121306. [Google Scholar] [CrossRef]
- Mellit, A.; Pavan, A.M.; Ogliari, E.; Leva, S.; Lughi, V. Advanced methods for photovoltaic output power forecasting. Appl. Sci. 2020, 10, 487. [Google Scholar] [CrossRef] [Green Version]
- Karner, O. ARIMA representation for daily solar irradiance and surface air temperature time series. J. Atmos. Sol.-Terr. 2009, 71, 841–847. [Google Scholar] [CrossRef]
- Inman, R.H.; Pedro, H.T.; Coimbra, C.F. Solar forecasting methods for renewable energy integration. Energy Combust. 2013, 39, 535–576. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Younes, M.K.; Kim, J. Time series ARIMA model for prediction of daily and monthly average global solar radiation: The case study of Seoul, South Korea. Symmetry 2019, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Arbizu-Barrena, C.; Ruiz-Arias, J.A.; Rodríguez-Benítez, F.J.; Pozo-Vázquez, D.; Tovar-Pescador, J. Short-term solar radiation forecast using advection and diffusion of the MSG cloud index. Energy Sol. 2017, 155, 1092–1103. [Google Scholar] [CrossRef]
- Diagne, M.; David, M.; Boland, J.; Schmutz, N.; Lauret, P. Post processing of solar irradiance forecasts from the WRF model in Island. Sol. Energy 2014, 105, 99–108. [Google Scholar] [CrossRef]
- Amit Kumar Yadav, S.S. Chandel, Solar radiation prediction using Artificial Neural Network techniques: A review. Renew. Sustain. Energy Rev. 2014, 33, 772–781. [Google Scholar] [CrossRef]
- López, G.; Batlles, F.J.; Tovar-Pescador, J. Selection of input parameters to model direct solar irradiance by using artificial neural networks. Energy 2005, 30, 1675–1684. [Google Scholar] [CrossRef]
- Wanga, Z.; Wanga, F.; Sub, S. Solar irradiance short-term prediction model based on BP neural network. Energy Procedia 2011, 12, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.J.; Tiwari, G.N. Solar radiation models—Review. Int. J. Energy Environ. 2010, 1, 513–532. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Xu, S.; Li, C.; Li, Q.; Tai, Y. A 3D ConvLSTM-CNN network based on multi-channel color extraction for ultrashort-term solar irradiance forecasting. Energy 2023, 272, 127140. [Google Scholar] [CrossRef]
- Osah, S.; Acheampong, A.A.; Fosu, C.; Dadzie, I. Deep learning model for predicting daily IGS zenith tropospheric delays in West Africa using TensorFlow and Keras. Adv. Space Res. 2021, 68, 1243–1262. [Google Scholar] [CrossRef]
- Lewis, C.D. International and Business Forecasting Methods; Butter Worths: London, UK, 1982. [Google Scholar]
- University of Oregon Solar Radiation Monitoring Laboratory. Available online: http://solardata.uoregon.edu/cgi-bin/ShowArchivalFiles.cgi (accessed on 1 April 2023).
- Yang, L.; Gao, X.; Hua, J.; Wang, L. Intra-day global horizontal irradiance forecast using FY-4A clear sky index. Sustain. Energy Technol. Assess. 2022, 50, 101816. [Google Scholar] [CrossRef]
- Yagasaki, K.; Uozumi, T.G. Controlling chaos using nonlinear approximations and delay coordinate embedding. Phys. Lett. A 1998, 247, 129–139. [Google Scholar] [CrossRef]
Variables | Units |
---|---|
Global radiation | Wh/m2 |
Direct radiation | Wh/m2 |
Diffuse radiation | Wh/m2 |
Power | W |
Wind speed | m/s |
Temperature | °C |
Global Radiation | Power | Wind Speed | Temperature |
---|---|---|---|
0.28% | 0.39% | 0.23% | 0.13% |
Structure ANN | Parameters |
---|---|
Network 1. | |
Hidden layers | (6, 123, 10) |
Activation function | Hyperbolic tangent |
Error threshold | 0.01 |
Algorithm | Back propagation |
Epoch | 100 |
Network 2. | |
Hidden layers | (3, 143, 7) |
Activation function | Sigmoid |
Error threshold | 0.01 |
Algorithm | Back propagation |
Epoch | 100 |
Network 3. | |
Hidden layers | (7, 128, 12) |
Activation function | Hyperbolic tangent |
Error threshold | 0.01 |
Algorithm | Back propagation |
Epoch | 100 |
Models | MAPE | MAE | MSE | R2 |
---|---|---|---|---|
SARIMA | 9.06% | 302.91 | 313,756.96 | 0.87 |
Network 1 | 0.57% | 69.29 | 82,826.71 | 0.97 |
Network 2 | 1.57% | 335.17 | 1,089,554.92 | 0.93 |
Network 3 | 4.05% | 521.73 | 4,505,871.20 | 0.91 |
Sky Index | 38.6% | 1096.34 | 28,563,065.34 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-González, G.; Cerezo-Román, J.; Satamaría-Bonfil, G. Development of Methodology for the Evaluation of Solar Energy through Hybrid Models for the Energy Sector. Eng. Proc. 2023, 39, 73. https://doi.org/10.3390/engproc2023039073
González-González G, Cerezo-Román J, Satamaría-Bonfil G. Development of Methodology for the Evaluation of Solar Energy through Hybrid Models for the Energy Sector. Engineering Proceedings. 2023; 39(1):73. https://doi.org/10.3390/engproc2023039073
Chicago/Turabian StyleGonzález-González, Georgina, Jesús Cerezo-Román, and Guillermo Satamaría-Bonfil. 2023. "Development of Methodology for the Evaluation of Solar Energy through Hybrid Models for the Energy Sector" Engineering Proceedings 39, no. 1: 73. https://doi.org/10.3390/engproc2023039073
APA StyleGonzález-González, G., Cerezo-Román, J., & Satamaría-Bonfil, G. (2023). Development of Methodology for the Evaluation of Solar Energy through Hybrid Models for the Energy Sector. Engineering Proceedings, 39(1), 73. https://doi.org/10.3390/engproc2023039073