A Comparison between Successive Estimate of TVAR(1) and TVAR(2) and the Estimate of a TVAR(3) Process †
Abstract
:1. Introduction
2. Successive Estimation Using TVAR(1) and TVAR(2) Processes
3. Restrictions of TVAR(3) Process with Linear Root Motion
3.1. Calculation of the Roots from the Time-Stable Coefficients
3.2. Restrictions for Linear Root Motion
4. Application: Two GNSS Time Series
- Via three TVAR(1) processes.
- Via a TVAR(1) process followed by a TVAR(2) process.
- Via a TVAR(2) process followed by a TVAR(1) estimate.
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schuh, W.D. Signalverarbeitung in der Physikalischen Geodäsie. In Erdmessung und Satellitengeodäsie: Handbuch der Geodäsie, herausgegeben von Willi Freeden und Reiner Rummel; Rummel, R., Ed.; Springer Reference Naturwissenschaften; Springer: Berlin/Heidelberg, Germany, 2017; pp. 73–121. [Google Scholar] [CrossRef]
- Schubert, T.; Brockmann, J.M.; Schuh, W.D. Identification of Suspicious Data for Robust Estimation of Stochastic Processes. In Proceedings of the IX Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy, 18–22 June 2018; Novák, P., Crespi, M., Sneeuw, N., Sansò, F., Eds.; Springer International Publishing: Cham, Switzerland, 2021. International Association of Geodesy Symposia. pp. 199–207. [Google Scholar] [CrossRef]
- Schuh, W.D.; Krasbutter, I.; Kargoll, B. Korrelierte Messung—Was Nun? In Zeitabhängige Messgrößen—Ihre Daten Haben (Mehr-)Wert; Neuner, H., Ed.; Wißner: Augsburg, Germany, 2014; Volume 74, pp. 85–101. [Google Scholar]
- Schuh, W.D.; Brockmann, J.M. Numerical Treatment of Covariance Stationary Processes in Least Squares Collocation. In Handbuch der Geodäsie: 6 Bände; Freeden, W., Rummel, R., Eds.; Springer Reference Naturwissenschaften; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–37. [Google Scholar] [CrossRef]
- Charbonnier, R.; Barlaud, M.; Alengrin, G.; Menez, J. Results on AR-modelling of Nonstationary Signals. Signal Process. 1987, 12, 143–151. [Google Scholar] [CrossRef]
- Kargoll, B.; Omidalizarandi, M.; Alkhatib, H.; Schuh, W.D. Further Results on a Modified EM Algorithm for Parameter Estimation in Linear Models with Time-Dependent Autoregressive and t-Distributed Errors. In Proceedings of the Time Series Analysis and Forecasting; Rojas, I., Pomares, H., Valenzuela, O., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 323–337. [Google Scholar]
- Grenier, Y. Time-Dependent ARMA Modeling of Nonstationary Signals. IEEE Trans. Acoust. Speech Signal Process. 1983, 31, 899–911. [Google Scholar] [CrossRef]
- Hall, M.; Oppenheim, A.V.; Willsky, A. Time-Varying Parametric Modeling of Speech. In Proceedings of the 1977 IEEE Conference on Decision and Control Including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications, Tokyo, Japan, 7–9 December 1977; pp. 1085–1091. [Google Scholar] [CrossRef] [Green Version]
- Slepian, D. Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty—V: The Discrete Case. Bell Syst. Tech. J. 1978, 57, 1371–1430. [Google Scholar] [CrossRef]
- Kamen, E.W. The poles and zeros of a linear time-varying system. Linear Algebra Its Appl. 1988, 98, 263–289. [Google Scholar] [CrossRef] [Green Version]
- Korte, J.; Schubert, T.; Brockmann, J.M.; Schuh, W.D. On the Estimation of Time Varying AR Processes; International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Dahlhaus, R. Fitting Time Series Models to Nonstationary Processes. Ann. Stat. 1997, 25, 1–37. [Google Scholar] [CrossRef]
- Ludyk, G. CAE von Dynamischen Systemen; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Ayoub, R.G. Paolo Ruffini’s Contributions to the Quintic. Arch. Hist. Exact Sci. 1980, 23, 253–277. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korte, J.; Brockmann, J.M.; Schuh, W.-D. A Comparison between Successive Estimate of TVAR(1) and TVAR(2) and the Estimate of a TVAR(3) Process. Eng. Proc. 2023, 39, 90. https://doi.org/10.3390/engproc2023039090
Korte J, Brockmann JM, Schuh W-D. A Comparison between Successive Estimate of TVAR(1) and TVAR(2) and the Estimate of a TVAR(3) Process. Engineering Proceedings. 2023; 39(1):90. https://doi.org/10.3390/engproc2023039090
Chicago/Turabian StyleKorte, Johannes, Jan Martin Brockmann, and Wolf-Dieter Schuh. 2023. "A Comparison between Successive Estimate of TVAR(1) and TVAR(2) and the Estimate of a TVAR(3) Process" Engineering Proceedings 39, no. 1: 90. https://doi.org/10.3390/engproc2023039090
APA StyleKorte, J., Brockmann, J. M., & Schuh, W.-D. (2023). A Comparison between Successive Estimate of TVAR(1) and TVAR(2) and the Estimate of a TVAR(3) Process. Engineering Proceedings, 39(1), 90. https://doi.org/10.3390/engproc2023039090