Benchmarking Computer-Vision-Based Facial Emotion Classification Algorithms While Wearing Surgical Masks †
Abstract
:1. Introduction
2. Computer-Vision Based Facial Emotion Recognition
3. Development
3.1. Materials
3.2. Methods
4. Results
4.1. Face Detection
4.2. Facial Emotion Classification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zadra, J.R.; Clore, G.L. Emotion and Perception: The Role of Affective Information. Wiley Interdiscip. Rev. Cogn. Sci. 2011, 2, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.K.; Habel, U.; Gur, R.C. Facial Expression-Based Indicators of Schizophrenia: Evidence from Recent Research. Schizophr. Res. 2023, 252, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, M.; Glumbić, N.; Brojčin, B.; Banković, S.; Žunić Pavlović, V. Differences in Pragmatic Communication Skills of Adults with Intellectual Disabilities and Dual Diagnoses. Front. Psychiatry 2023, 14, 1072736. [Google Scholar] [CrossRef] [PubMed]
- Gerłowska, J.; Dmitruk, K.; Rejdak, K.; Gerłowska, J.; Dmitruk, K.; Rejdak, K. Facial Emotion Mimicry in Older Adults with and without Cognitive Impairments Due to Alzheimer’s Disease. AIMS Neurosci. 2021, 8, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.; Braga, D.; Dias, M.; Garcia-Mateo, C. An Automatic Voice Pleasantness Classification System Based on Prosodic and Acoustic Patterns of Voice Preference. In Proceedings of the Interspeech 2011-12th Annual Conference of the International Speech Communication Association, Florence, Italy, 27–31 August 2011. [Google Scholar]
- Zhang, S.; Meng, Z.; Chen, B.; Yang, X.; Zhao, X. Motivation, Social Emotion, and the Acceptance of Artificial Intelligence Virtual Assistants—Trust-Based Mediating Effects. Front. Psychol. 2021, 12, 728495. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.; Reis, S. Enhancing Learning Experiences Through Artificial Intelligence: Classroom 5.0. In Fostering Pedagogy Through Micro and Adaptive Learning in Higher Education: Trends, Tools, and Applications; IGI Global: Hershey, PA, USA, 2023; ISBN 978-1-66848-656-6. [Google Scholar]
- Xiao, H.; Li, W.; Zeng, G.; Wu, Y.; Xue, J.; Zhang, J.; Li, C.; Guo, G. On-Road Driver Emotion Recognition Using Facial Expression. Appl. Sci. 2022, 12, 807. [Google Scholar] [CrossRef]
- Jack, R.E.; Garrod, O.G.B.; Yu, H.; Caldara, R.; Schyns, P.G. Facial Expressions of Emotion Are Not Culturally Universal. Proc. Natl. Acad. Sci. 2012, 109, 7241–7244. [Google Scholar] [CrossRef] [PubMed]
- Barrett, L.F.; Adolphs, R.; Marsella, S.; Martinez, A.M.; Pollak, S.D. Emotional Expressions Reconsidered: Challenges to Inferring Emotion From Human Facial Movements. Psychol. Sci. Public. Interest. 2019, 20, 1–68. [Google Scholar] [CrossRef] [PubMed]
- Ekman, P.; Friesen, W.V.; Hager, J.C. Facial Action Coding System. Manual and Investigator’s Guide; Research Nexus: Salt Lake City, UT, USA, 2002. [Google Scholar]
- Canedo, D.; Neves, A.J.R. Facial Expression Recognition Using Computer Vision: A Systematic Review. Appl. Sci. 2019, 9, 4678. [Google Scholar] [CrossRef]
- Creative Commons—Attribution 4.0 International—CC BY 4.0. Available online: https://creativecommons.org/licenses/by/4.0/deed.en (accessed on 10 August 2023).
- Lopes, A.T.; de Aguiar, E.; De Souza, A.F.; Oliveira-Santos, T. Facial Expression Recognition with Convolutional Neural Networks: Coping with Few Data and the Training Sample Order. Pattern Recognit. 2017, 61, 610–628. [Google Scholar] [CrossRef]
- Gan, Y. Facial Expression Recognition Using Convolutional Neural Network. In Proceedings of the 2nd International Conference on Vision, Image and Signal Processing, Las Vegas, NV, USA, 27–29 August 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- FER-2013. Available online: https://www.kaggle.com/datasets/msambare/fer2013 (accessed on 11 August 2023).
- Hu, M.; Wang, H.; Wang, X.; Yang, J.; Wang, R. Video Facial Emotion Recognition Based on Local Enhanced Motion History Image and CNN-CTSLSTM Networks. J. Vis. Commun. Image Represent. 2019, 59, 176–185. [Google Scholar] [CrossRef]
- Ali, H.; Hariharan, M.; Yaacob, S.; Adom, A.H. Facial Emotion Recognition Using Empirical Mode Decomposition. Expert Syst. Appl. 2015, 42, 1261–1277. [Google Scholar] [CrossRef]
- Kotsia, I.; Pitas, I. Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines. IEEE Trans. Image Process. 2007, 16, 172–187. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; McOwan, P.W. A Real-Time Automated System for the Recognition of Human Facial Expressions. IEEE Trans. Syst. Man Cybern. Part B 2006, 36, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1701–1708. [Google Scholar]
- Hussain, N.; Ujir, H.; Hipiny, I.; Minoi, J.-L. 3D Facial Action Units Recognition for Emotional Expression 2017. arXiv 2017, arXiv:1712.00195. [Google Scholar]
Location | Happiness | Sadness | Surprise | Fear | Anger | Disgust |
---|---|---|---|---|---|---|
Top | 1 + 4 | 1 + 2 + 5B | 1 + 2 + 4 + 5 + 7 | 4 + 5 + 7 | ||
Middle | 6 | 9 | ||||
Low | 12 | 15 | 26 | 20 + 26 | 23 | 15 + 17 |
Ref., Year. | Model | Precision | Description |
---|---|---|---|
[18], 2015 | k-NN, Gaussian SVM, ELM-RBF | 99.75% | CK (500 image sequences of 100 people) |
[14], 2017 | CNN | 99.68% | CK+ (147,000 samples) |
[15], 2018 | VGG, ResNet, GoogleNet, AlexNet, | 60.98% 49.16% 63.91% 64.24% | FER2013 (35,887 different facial images divided into 7 categories.) |
[17], 2019 | VGG-16+, LEMHI | 78.40% | MMI (20 people of different ethnicities and ages. Each person recorded 79 series of facial expressions.) |
[19], 2005 | SVM Multiclass | 99.70% | CK (500 image sequences of 100 people.) |
[20], 2006 | SVM, LP | 80.52% 81.82% | CMU-Pittsburg and database without expressions (Only a part of the dataset was used. 253 examples of expressions.) |
[21], 2009 | DeepFace | 97.70% 91.40% | LFW (13,323 internet photos of 5749 celebrities) YTF (3425 YouTube videos from 1595 people) |
Emotion | Precision | Recall | F1-Score | Face Detection | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | O | M | M/O | O | M | M/O | O | M | M/O | O | FD | FD/O |
Angry | 0.72 | 0.26 | 36.1% | 0.65 | 0.25 | 38.5% | 0.69 | 0.26 | 37.7% | 3994 | 3002 | 75.2% |
Disgust | 0.58 | 0.10 | 17.2% | 0.66 | 0.27 | 40.9% | 0.62 | 0.14 | 22.6% | 436 | 357 | 81.9% |
Fear | 0.54 | 0.19 | 35.2% | 0.78 | 0.28 | 35.9% | 0.64 | 0.22 | 34.4% | 4097 | 2772 | 67.7% |
Happy | 0.84 | 0.44 | 52.4% | 0.89 | 0.32 | 36.0% | 0.86 | 0.37 | 43.0% | 7215 | 5974 | 82.8% |
Neutral | 0.83 | 0.37 | 44.6% | 0.59 | 0.30 | 50.8% | 0.69 | 0.33 | 47.8% | 9930 | 5334 | 53.7% |
Sad | 0.66 | 0.27 | 40.9% | 0.76 | 0.27 | 35.5% | 0.71 | 0.27 | 38.0% | 4830 | 2982 | 61.7% |
Surprise | 0.77 | 0.34 | 44.2% | 0.79 | 0.43 | 54.4% | 0.78 | 0.38 | 48.7% | 3171 | 2484 | 78.3% |
Accuracy | - | - | - | - | - | - | 0.73 | 0.31 | - | 33673 | 22905 | - |
Macro Avg. | 0.70 | 0.28 | - | 0.73 | 0.30 | - | 0.71 | 0.28 | - | 33673 | 22905 | - |
Weigth. Avg. | 0.75 | 0.33 | - | 0.73 | 0.31 | - | 0.73 | 0.31 | - | 33673 | 22905 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, L.; Reis, S.; Moreira, C.; Cardoso, H.; Sequeira, M.; Coelho, R. Benchmarking Computer-Vision-Based Facial Emotion Classification Algorithms While Wearing Surgical Masks. Eng. Proc. 2023, 50, 3. https://doi.org/10.3390/engproc2023050003
Coelho L, Reis S, Moreira C, Cardoso H, Sequeira M, Coelho R. Benchmarking Computer-Vision-Based Facial Emotion Classification Algorithms While Wearing Surgical Masks. Engineering Proceedings. 2023; 50(1):3. https://doi.org/10.3390/engproc2023050003
Chicago/Turabian StyleCoelho, Luis, Sara Reis, Cristina Moreira, Helena Cardoso, Miguela Sequeira, and Raquel Coelho. 2023. "Benchmarking Computer-Vision-Based Facial Emotion Classification Algorithms While Wearing Surgical Masks" Engineering Proceedings 50, no. 1: 3. https://doi.org/10.3390/engproc2023050003
APA StyleCoelho, L., Reis, S., Moreira, C., Cardoso, H., Sequeira, M., & Coelho, R. (2023). Benchmarking Computer-Vision-Based Facial Emotion Classification Algorithms While Wearing Surgical Masks. Engineering Proceedings, 50(1), 3. https://doi.org/10.3390/engproc2023050003