Potential Applications of Different Forms of Recycled Plastics as Construction Materials—A Review †
Abstract
:1. Introduction
2. Generation of Waste Plastic
3. Waste Plastic Recycling Techniques
4. Application of Recycled Plastic as a Construction Material
5. Conclusions
- The 2% annual growth rate of waste plastic is an alarming environmental challenge for Pakistan which needs to be addressed using an industrial-level recycling plan.
- The decision to adopt a feasible recycling process majorly depends on the cost-effectiveness, the desired properties of the by-products, and environmental impacts.
- Through obtaining recycled plastic with desirable mechanical and durability properties, waste plastic generation can benefit the construction industry by providing sustainable and resilient materials.
- Future research studies should be oriented towards the properties-oriented process modification of recycling techniques to accelerate the large-scale transition of waste plastic into useful recycled plastic.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Y.; Zhou, H.; Jiang, X.; Polaczyk, P.; Xiao, R.; Zhang, M.; Huang, B. The utilization of waste plastics in asphalt pavements: A review. Clean. Mater. 2021, 2, 100031. [Google Scholar] [CrossRef]
- Gilbert, M. Plastics materials: Introduction and historical development. In Brydson’s Plastics Materials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–18. [Google Scholar]
- Huang, S.; Wang, H.; Ahmad, W.; Ahmad, A.; Ivanovich Vatin, N.; Mohamed, A.M.; Deifalla, A.F.; Mehmood, I. Plastic waste management strategies and their environmental aspects: A scientometric analysis and comprehensive review. Int. J. Environ. Res. Public Health 2022, 19, 4556. [Google Scholar] [CrossRef]
- Tamoor, M.; Samak, N.A.; Xing, J. Pakistan toward Achieving Net-Zero Emissions: Policy and Roadmap. ACS Sustain. Chem. Eng. 2022, 11, 368–380. [Google Scholar] [CrossRef]
- Malkar, R.; Kagale, S.; Chavan, S.; Tiwari, M.; Patil, P. Applications of Bioplastics in Sports and Leisure. Handb. Bioplastics Biocomposites Eng. Appl. 2023, 2, 299–315. [Google Scholar]
- Tejaswini, M.; Pathak, P.; Ramkrishna, S.; Ganesh, P.S. A comprehensive review on integrative approach for sustainable management of plastic waste and its associated externalities. Sci. Total Environ. 2022, 825, 153973. [Google Scholar] [CrossRef] [PubMed]
- Schnurr, R.E.; Alboiu, V.; Chaudhary, M.; Corbett, R.A.; Quanz, M.E.; Sankar, K.; Srain, H.S.; Thavarajah, V.; Xanthos, D.; Walker, T.R. Reducing marine pollution from single-use plastics (SUPs): A review. Mar. Pollut. Bull. 2018, 137, 157–171. [Google Scholar] [CrossRef]
- Benin, M.A.; Retnam, B.S.J.; Ramachandran, M.; Sivapragash, M.; Dhas, J.E.R. Comparative study of tensile properties on Thermoplastic & Thermosetting polymer composites. Int. J. Appl. Eng. Res. 2015, 10, 10109–10113. [Google Scholar]
- Geyer, R. A brief history of plastics. Mare Plast.-Plast. Sea Combat. Plast. Pollut. Through Sci. Art 2020, 31–47. [Google Scholar]
- Stieven Montagna, L.; Ferreira de Melo Morgado, G.; Lemes, A.P.; Roberto Passador, F.; Cerqueira Rezende, M. Recycling of carbon fiber-reinforced thermoplastic and thermoset composites: A review. J. Thermoplast. Compos. Mater. 2023, 36, 3455–3480. [Google Scholar] [CrossRef]
- Zhou, P.; Tian, J.; Li, C.; Tang, Z. Comparative study of durability behaviors of thermoplastic polypropylene and thermosetting epoxy exposed to elevated temperature, water immersion and sustained bending loading. Polymers 2022, 14, 2953. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, B.; Zhang, J. Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification. Polymer 2020, 194, 122392. [Google Scholar] [CrossRef]
- Bhagat, G.V.; Savoikar, P.P. Durability related properties of cement composites containing thermoplastic aggregates–A review. J. Build. Eng. 2022, 53, 104565. [Google Scholar] [CrossRef]
- Huang, Y.S.; Zhou, Y.; Zeng, X.; Zhang, D.; Wu, S. Reversible Crosslinking of Commodity Polymers via Photocontrolled Metal–Ligand Coordination for High-Performance and Recyclable Thermoset Plastics. Adv. Mater. 2023, 35, 2305517. [Google Scholar] [CrossRef] [PubMed]
- Oladele, I.O.; Okoro, C.J.; Taiwo, A.S.; Onuh, L.N.; Agbeboh, N.I.; Balogun, O.P.; Olubambi, P.A.; Lephuthing, S.S. Modern Trends in Recycling Waste Thermoplastics and Their Prospective Applications: A Review. J. Compos. Sci. 2023, 7, 198. [Google Scholar] [CrossRef]
- Millet, H.; Vangheluwe, P.; Block, C.; Sevenster, A.; Garcia, L.; Antonopoulos, R. The nature of plastics and their societal usage. Plast. Environ. 2018, 2018, 1–20. [Google Scholar]
- Luhar, S.; Luhar, I. Potential application of E-wastes in construction industry: A review. Constr. Build. Mater. 2019, 203, 222–240. [Google Scholar] [CrossRef]
- Nasier, S. Utilization of recycled form of concrete, E-wastes, glass, quarry rock dust and waste marble powder as reliable construction materials. Mater. Today Proc. 2021, 45, 3231–3234. [Google Scholar] [CrossRef]
- Chen, H.; Qin, R.; Chow, C.L.; Lau, D. Recycling thermoset plastic waste for manufacturing green cement mortar. Cem. Concr. Compos. 2023, 137, 104922. [Google Scholar] [CrossRef]
- Ma, J.; Nawarathna, H.M.; Hesp, S.A. On the sustainable use of recycled plastics in flexible asphalt pavements. J. Clean. Prod. 2022, 359, 132081. [Google Scholar] [CrossRef]
- Singh, R.K.; Ruj, B. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 2016, 174, 164–171. [Google Scholar] [CrossRef]
- Rajmohan, K.V.S.; Ramya, C.; Viswanathan, M.R.; Varjani, S. Plastic pollutants: Effective waste management for pollution control and abatement. Curr. Opin. Environ. Sci. Health 2019, 12, 72–84. [Google Scholar] [CrossRef]
- Kibria, M.G.; Masuk, N.I.; Safayet, R.; Nguyen, H.Q.; Mourshed, M. Plastic waste: Challenges and opportunities to mitigate pollution and effective management. Int. J. Environ. Res. 2023, 17, 20. [Google Scholar] [CrossRef]
- Silvarrey, L.D.; Phan, A. Kinetic study of municipal plastic waste. Int. J. Hydrogen Energy 2016, 41, 16352–16364. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Pettipas, S.; Bernier, M.; Walker, T.R. A Canadian policy framework to mitigate plastic marine pollution. Mar. Policy 2016, 68, 117–122. [Google Scholar] [CrossRef]
- Pivnenko, K.; Eriksen, M.K.; Martín-Fernández, J.A.; Eriksson, E.; Astrup, T.F. Recycling of plastic waste: Presence of phthalates in plastics from households and industry. Waste Manag. 2016, 54, 44–52. [Google Scholar] [CrossRef]
- Eriksen, M.K.; Pivnenko, K.; Olsson, M.E.; Astrup, T.F. Contamination in plastic recycling: Influence of metals on the quality of reprocessed plastic. Waste Manag. 2018, 79, 595–606. [Google Scholar] [CrossRef]
- Ghinea, C.; Drăgoi, E.N.; Comăniţă, E.-D.; Gavrilescu, M.; Câmpean, T.; Curteanu, S.; Gavrilescu, M. Forecasting municipal solid waste generation using prognostic tools and regression analysis. J. Environ. Manag. 2016, 182, 80–93. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Recycling of waste from polymer materials: An overview of the recent works. Polym. Degrad. Stab. 2013, 98, 2801–2812. [Google Scholar] [CrossRef]
- Maddah, H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci 2016, 6, 1–11. [Google Scholar]
- Amin, S.; Amin, M. Thermoplastic elastomeric (TPE) materials and their use in outdoor electrical insulation. Rev. Adv. Mater. Sci 2011, 29, 15–30. [Google Scholar]
- Bobade, S.K.; Paluvai, N.R.; Mohanty, S.; Nayak, S. Bio-based thermosetting resins for future generation: A review. Polym.-Plast. Technol. Eng. 2016, 55, 1863–1896. [Google Scholar] [CrossRef]
- Shamsuyeva, M.; Endres, H.-J. Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Compos. Part C Open Access 2021, 6, 100168. [Google Scholar] [CrossRef]
- Shen, L.; Worrell, E. Plastic recycling. In Handbook of Recycling; Elsevier: Amsterdam, The Netherlands, 2014; pp. 179–190. [Google Scholar]
- Schyns, Z.O.; Shaver, M.P. Mechanical recycling of packaging plastics: A review. Macromol. Rapid Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Guo, J.; Zhang, W.; Summers, P.A.; Hall, P. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci. Total Environ. 2017, 601, 1192–1207. [Google Scholar] [CrossRef]
- Thiounn, T.; Smith, R.C. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 2020, 58, 1347–1364. [Google Scholar] [CrossRef]
- Rahimi, A.; García, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046. [Google Scholar] [CrossRef]
- Kijo-Kleczkowska, A.; Gnatowski, A. Recycling of plastic waste, with particular emphasis on thermal methods. Energies 2022, 15, 2114. [Google Scholar] [CrossRef]
- Soong, Y.-H.V.; Sobkowicz, M.J.; Xie, D. Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes. Bioengineering 2022, 9, 98. [Google Scholar] [CrossRef]
- Zhuo, C.; Levendis, Y.A. Upcycling waste plastics into carbon nanomaterials: A review. J. Appl. Polym. Sci. 2014, 131, 39931. [Google Scholar] [CrossRef]
- Lee, A.; Liew, M.S. Tertiary recycling of plastics waste: An analysis of feedstock, chemical and biological degradation methods. J. Mater. Cycles Waste Manag. 2021, 23, 32–43. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Arif, Z.U.; Ahmed, W.; Arshad, H. Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustain. Mater. Technol. 2022, 31, e00382. [Google Scholar] [CrossRef]
- Vollmer, I.; Jenks, M.J.; Roelands, M.C.; White, R.J.; van Harmelen, T.; de Wild, P.; van Der Laan, G.P.; Meirer, F.; Keurentjes, J.T.; Weckhuysen, B.M. Beyond mechanical recycling: Giving new life to plastic waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423. [Google Scholar] [CrossRef] [PubMed]
- Soni, A.; Das, P.K.; Yusuf, M.; Kamyab, H.; Chelliapan, S. Development of sand-plastic composites as floor tiles using silica sand and recycled thermoplastics: A sustainable approach for cleaner production. Sci. Rep. 2022, 12, 18921. [Google Scholar] [CrossRef] [PubMed]
- Duggal, P.; Shisodia, A.S.; Havelia, S.; Jolly, K. Use of waste plastic in wearing course of flexible pavement. In Proceedings of the Advances in Structural Engineering and Rehabilitation: Select Proceedings of TRACE 2018, Greifswald, Germany, 24–27 April 2018; pp. 177–187. [Google Scholar]
- Appiah, J.K.; Berko-Boateng, V.N.; Tagbor, T.A. Use of waste plastic materials for road construction in Ghana. Case Stud. Constr. Mater. 2017, 6, 1–7. [Google Scholar] [CrossRef]
Approach | Process | Ref. |
---|---|---|
Mechanical Recycling | The sorting, cleaning, shredding, and then melting waste plastic. | [36] |
Chemical Recycling | The breakdown of plastic waste into its constituent molecules through chemical processing. | [39] |
Thermal Recycling | The breakdown of plastic waste into its constituent molecules through heating at a high temperature. | [40] |
Biological Recycling | The conversion of plastic waste into biomass or other useful products through microorganisms such as bacteria or fungi. | [41] |
Application | Composition | Modified Properties | Ref. |
---|---|---|---|
Eco-friendly cement mortar | 5% thermoset waste as a replacement for fine particles | The highest compressive strength, a highly dense microstructure, and a robust interfacial transition zone. | [19] |
Sand–plastic composites as floor tiles | 50% sand and 50% HDPE | Maximum compressive and flexural strength due to sufficient adhesion, increased interfacial bonding, and low water absorption. | [46] |
Wearing course of flexible pavement | Modified bitumen mix and processed waste plastic of about 5–10% by wt. of bitumen | Increased fatigue life and strength, ultimately enhancing the service life of pavement. | [47] |
Pavement construction | 0.5–3% HDPE and PP by weight of graded bitumen at a temperature range from 160 °C to 170 °C | A successful blending-in of the polymer strands in bitumen was observed. Stable polymer-modified bitumen was obtained using PP for pavement construction. | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.; Ali, M. Potential Applications of Different Forms of Recycled Plastics as Construction Materials—A Review. Eng. Proc. 2023, 53, 5. https://doi.org/10.3390/IOCBD2023-15177
Ahmed S, Ali M. Potential Applications of Different Forms of Recycled Plastics as Construction Materials—A Review. Engineering Proceedings. 2023; 53(1):5. https://doi.org/10.3390/IOCBD2023-15177
Chicago/Turabian StyleAhmed, Shehryar, and Majid Ali. 2023. "Potential Applications of Different Forms of Recycled Plastics as Construction Materials—A Review" Engineering Proceedings 53, no. 1: 5. https://doi.org/10.3390/IOCBD2023-15177
APA StyleAhmed, S., & Ali, M. (2023). Potential Applications of Different Forms of Recycled Plastics as Construction Materials—A Review. Engineering Proceedings, 53(1), 5. https://doi.org/10.3390/IOCBD2023-15177