Electrochemical Sensor for Ultra-Sensitive Detection of Lead (II) Ions in Water Using Na3BiO4-Bi2O3 Mixed Oxide Nanostructures †
Abstract
:1. Introduction
2. Heavy Metal Ion Detection Procedure
3. Results and Discussion
3.1. Morphological, Structural and Compositional Studies
3.2. Lead (II) Ion Detection
3.3. Simultaneous Detection of Lead (II) and Mercury (II) Ions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, V.; Singh, N.; Rai, S.N.; Kumar, A.; Singh, A.K.; Singh, M.P.; Sahoo, A.; Shekhar, S.; Vamanu, E.; Mishra, V. Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics 2023, 11, 147. [Google Scholar] [CrossRef]
- Dhiman, V.; Kondal, N. ZnO nanoadsorbents: A potent material for removal of heavy metal ions from wastewater. Colloid Interface Sci. Commun. 2021, 41, 100380. [Google Scholar] [CrossRef]
- Yan, C.; Qu, Z.; Wang, J.; Cao, L.; Han, Q. Microalgal bioremediation of heavy metal pollution in water: Recent advances, challenges, and prospects. Chemosphere 2022, 286, 131870. [Google Scholar] [CrossRef]
- Chow, E.; Hibbert, D.B.; Gooding, J.J. Electrochemical detection of lead ions via the covalent attachment of human angiotensin I to mercaptopropionic acid and thioctic acid self-assembled monolayers. Anal. Chim. Acta 2005, 543, 167–176. [Google Scholar] [CrossRef]
- Li, C.-L.; Liu, K.-T.; Lin, Y.-W.; Chang, H.-T. Fluorescence detection of lead (II) ions through their induced catalytic activity of DNAzymes. Anal. Chem. 2010, 83, 225–230. [Google Scholar] [CrossRef]
- Needleman, H.L.; Bellinger, D. The health effects of low level exposure to lead. Annu. Rev. Public Health 1991, 12, 111–140. [Google Scholar] [CrossRef] [PubMed]
- Markovac, J.; Goldstein, G.W. Picomolar concentrations of lead stimulate brain protein kinase C. Nature 1988, 334, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Stripping Analysis: Principles, Instrumentation, and Applications; Vch Pub: Hoboken, NJ, USA, 1985. [Google Scholar]
- Perween, M.; Parmar, D.B.; Bhadu, G.R.; Srivastava, D.N. Polymer–graphite composite: A versatile use and throw plastic chip electrode. Analyst 2014, 139, 5919–5926. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, W.; Ma, J.; Chen, L. Determination of mercury (II) in water samples using dispersive liquid-liquid microextraction and back extraction along with capillary zone electrophoresis. Microchim. Acta 2011, 175, 301–308. [Google Scholar] [CrossRef]
- Shekhar, R. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium. Talanta 2012, 93, 32–36. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, J.; Fang, L.; Lin, Q.; Wu, Y.; Xue, Z.; Fu, F. Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis–inductively coupled plasma mass spectrometry. Talanta 2012, 89, 280–285. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Ju, H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 2015, 63, 276–286. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef]
- Fan, H.-L.; Zhou, S.-F.; Gao, J.; Liu, Y.-Z. Continuous preparation of Fe3O4 nanoparticles through Impinging Stream-Rotating Packed Bed reactor and their electrochemistry detection toward heavy metal ions. J. Alloys Compd. 2016, 671, 354–359. [Google Scholar] [CrossRef]
- Zhang, Q.-X.; Peng, D.; Huang, X.-J. Effect of morphology of α-MnO2 nanocrystals on electrochemical detection of toxic metal ions. Electrochem. Commun. 2013, 34, 270–273. [Google Scholar] [CrossRef]
- Han, X.-J.; Zhou, S.-F.; Fan, H.-L.; Zhang, Q.-X.; Liu, Y.-Q. Mesoporous MnFe2O4 nanocrystal clusters for electrochemistry detection of lead by stripping voltammetry. J. Electroanal. Chem. 2015, 755, 203–209. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, P.; Dai, H.; Chen, L.; Ma, H.; Lin, M.; Shen, D. An electrochemical sensor based on Co3O4 nanosheets for lead ions determination. RSC Adv. 2017, 7, 39611–39616. [Google Scholar] [CrossRef]
- Michel, S.; Diliberto, S.; Boulanger, C.; Stein, N.; Lecuire, J.M. Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: Effect of chemical and electrochemical parameters. J. Cryst. Growth 2005, 277, 274–283. [Google Scholar] [CrossRef]
- Morales, J.; Sanchez, L.; Bijani, S.; Martínez, L.; Gabas, M.; Ramos-Barrado, J.R. Electrodeposition of Cu2O: An excellent method for obtaining films of controlled morphology and good performance in Li-ion batteries. Electrochem. Solid-State Lett. 2005, 8, A159–A162. [Google Scholar] [CrossRef]
- March, G.; Nguyen, T.D.; Piro, B. Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 2015, 5, 241–275. [Google Scholar] [CrossRef]
- Farghaly, O.A.; Ghandour, M.A. Square-wave stripping voltammetry for direct determination of eight heavy metals in soil and indoor-airborne particulate matter. Environ. Res. 2005, 97, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, G.U.; Vijayakrishnan, V.; Ranga Rao, G.; Seshadri, R.; Rao, C.N.R. State of bismuth in BaBiO3 and BaBi1−xPbxO3: Bi 4f photoemission and Bi L3 absorption spectroscopic studies. Appl. Phys. Lett. 1990, 57, 1823–1824. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, F.; Zhu, L.; Wang, N.; Tang, H. Bi3+ self doped NaBiO3 nanosheets: Facile controlled synthesis and enhanced visible light photocatalytic activity. Appl. Catal. B Environ. 2015, 164, 151–158. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, R.; Yu, X.-Y.; Wang, L.; Liu, J.-H.; Huang, X.-J. Stripping voltammetry study of ultra-trace toxic metal ions on highly selectively adsorptive porous magnesium oxide nanoflowers. Analyst 2012, 137, 2183–2191. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, S.; Tripathi, M.; Sharma, S.; Kumar, M. Electrochemical Sensor for Ultra-Sensitive Detection of Lead (II) Ions in Water Using Na3BiO4-Bi2O3 Mixed Oxide Nanostructures. Eng. Proc. 2023, 59, 108. https://doi.org/10.3390/engproc2023059108
Gupta S, Tripathi M, Sharma S, Kumar M. Electrochemical Sensor for Ultra-Sensitive Detection of Lead (II) Ions in Water Using Na3BiO4-Bi2O3 Mixed Oxide Nanostructures. Engineering Proceedings. 2023; 59(1):108. https://doi.org/10.3390/engproc2023059108
Chicago/Turabian StyleGupta, Sandeep, Monika Tripathi, Shikha Sharma, and Manoj Kumar. 2023. "Electrochemical Sensor for Ultra-Sensitive Detection of Lead (II) Ions in Water Using Na3BiO4-Bi2O3 Mixed Oxide Nanostructures" Engineering Proceedings 59, no. 1: 108. https://doi.org/10.3390/engproc2023059108
APA StyleGupta, S., Tripathi, M., Sharma, S., & Kumar, M. (2023). Electrochemical Sensor for Ultra-Sensitive Detection of Lead (II) Ions in Water Using Na3BiO4-Bi2O3 Mixed Oxide Nanostructures. Engineering Proceedings, 59(1), 108. https://doi.org/10.3390/engproc2023059108