Comparison of Transfer Learning Techniques to Classify Brain Tumours Using MRI Images †
Abstract
:1. Introduction
Importance of MRI Biomedical Image Processing
2. Materials and Methods/Methodology
2.1. Literature Review
2.2. Proposed Methodology
2.3. Data Collection and Preprocessing
2.4. Transfer Learning Methods
2.4.1. VGG-16 Transfer Learning Approach
2.4.2. ResNet-50 Approach
2.4.3. Inception v3 Approach
2.5. Performance Metrics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DeAngelis, L.M. Brain tumors. New Engl. J. Med. 2001, 344, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, P.; Dhavileswarapu, A.; Ibrahim, S.; Paul, R.; Gupta, R. Exploring the Potential of VGG-16 Architecture for Accurate Brain Tumor Detection Using Deep Learning. J. Comput. Mech. Manag. 2023, 2, 13–22. [Google Scholar] [CrossRef]
- Gumaei, A.; Hassan, M.M.; Hassan, M.R.; Alelaiwi, A.; Fortino, G. A hybrid feature extraction method with regularized extreme learning machine for Brain Tumor Classification. IEEE Access 2019, 7, 36266–36273. [Google Scholar] [CrossRef]
- Gu, X.; Shen, Z.; Xue, J.; Fan, Y.; Ni, T. Brain tumor MR image classification using convolutional dictionary learning with local constraint. Front. Neurosci. 2021, 15, 679847. [Google Scholar] [CrossRef] [PubMed]
- Wasule, V.; Sonar, P. Classification of brain MRI using SVM and KNN classifier. In Proceedings of the 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), Chennai, India, 4–5 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 218–223. [Google Scholar]
- Abiwinanda, N.; Hanif, M.; Hesaputra, S.T.; Handayani, A.; Mengko, T.R. Brain Tumor Classification Using Convolutional Neural Network; IFMBE Proceedings; Springer: Berlin/Heidelberg, Germany, 2018; pp. 183–189. [Google Scholar]
- Sangeetha, R.; Mohanarathinam, A.; Aravindh, G.; Jayachitra, S.; Bhuvaneswari, M. Automatic detection of brain tumor using deep learning algorithms. In Proceedings of the 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 5–7 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar]
- Zhao, D.; Grist, J.T.; Rose, H.E.L.; Davies, N.P.; Wilson, M.; MacPherson, L.; Abernethy, L.J.; Avula, S.; Pizer, B.; Gutierrez, D.R.; et al. Metabolite selection for machine learning in childhood brain tumour classification. NMR Biomed. 2022, 35, e4673. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, V. ECG-Based User Authentication Using Deep Learning Architectures. Ph.D. Thesis, University of Victoria, Victoria, BC, Canada, 2023. [Google Scholar]
- Maqsood, S.; Damaševičius, R.; Maskeliūnas, R. Multi-modal Brain tumor detection using deep neural network and multiclass SVM. Medicina 2022, 58, 1090. [Google Scholar] [CrossRef] [PubMed]
- Rasool, M.; Ismail, N.A.; Boulila, W.; Ammar, A.; Samma, H.; Yafooz, W.M.; Emara, A.H.M. A Hybrid Deep Learning Model for Brain Tumour Classification. Entropy 2022, 24, 799. [Google Scholar] [CrossRef] [PubMed]
- Tazin, T.; Sarker, S.; Gupta, P.; Ayaz, F.I.; Islam, S.; Monirujjaman Khan, M.; Bourouis, S.; Idris, S.A.; Alshazly, H. A robust and novel approach for brain tumor classification using Convolutional Neural Network. Comput. Intell. Neurosci. 2021, 2021, 2392395. [Google Scholar] [CrossRef] [PubMed]
- Pedada, K.R.; Rao, B.; Patro, K.K.; Allam, J.P.; Jamjoom, M.M.; Samee, N.A. A novel approach for brain tumour detection using deep learning based technique. Biomed. Signal Process. Control. 2023, 82, 104549. [Google Scholar] [CrossRef]
- Kokila, B.; Devadharshini, M.S.; Anitha, A.; Abisheak Sankar, S. Brain tumor detection and classification using deep learning techniques based on MRI images. J. Phys. Conf. Ser. 2021, 1916, 012226. [Google Scholar] [CrossRef]
- Khan, H.A.; Jue, W.; Mushtaq, M.; Mushtaq, M.U. Brain tumor classification in MRI image using convolutional neural network. Math. Biosci. Eng. 2021, 17, 6203–6216. [Google Scholar] [CrossRef] [PubMed]
- Ahmed Mohammed, B.; Shaban Al-Ani, M. An efficient approach to diagnose brain tumors through deep CNN. Math. Biosci. Eng. 2021, 18, 851–867. [Google Scholar] [CrossRef] [PubMed]
- Deepak, S.; Ameer, P.M. Brain Tumor Classification using Deep CNN features via transfer learning. Comput. Biol. Med. 2019, 111, 103345. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumaran, N.; Vaithegi, S. Image segmentation by using thresholding techniques for medical images. Comput. Sci. Eng. Int. J. 2016, 6, 1–13. [Google Scholar]
- Belaid, O.N.; Loudini, M. Classification of brain tumor by combination of pre-trained vgg16 cnn. J. Inf. Technol. Manag. 2020, 12, 13–25. [Google Scholar]
- Chato, L.; Latifi, S. Machine learning and deep learning techniques to predict overall survival of brain tumor patients using MRI images. In Proceedings of the 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), Washington, DC, USA, 23–25 October 2017. [Google Scholar]
- Srinivas, C.; KS, N.P.; Zakariah, M.; Alothaibi, Y.A.; Shaukat, K.; Partibane, B.; Awal, H. Deep transfer learning approaches in performance analysis of brain tumor classification using MRI images. J. Healthc. Eng. 2022, 2022, 3264367. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, M.; Sivakumar, N.; Thirumaran, M.; Vengattaraman, T. Internet of medical things and cloud enabled brain tumour diagnosis model using Deep Learning with Kernel Extreme Learning Machine. Int. J. Electron. Healthc. 2022, 12, 203. [Google Scholar] [CrossRef]
- Xenya, M.C.; Wang, Z. Brain Tumour Detection and Classification using Multi-level Ensemble Transfer Learning in MRI Dataset. In Proceedings of the 2021 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Durban, South Africa, 5–6 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar]
Glioma Images | Meningioma Images | Pituitary Images | No Tumour | Total | |
---|---|---|---|---|---|
Training | 1321 | 1339 | 1457 | 1595 | 5712 |
Testing | 300 | 306 | 300 | 405 | 1311 |
Model | Category | Precision | Recall | F1 Score |
---|---|---|---|---|
ResNet-50 | Glioma | 0.99 | 0.97 | 0.98 |
Meningioma | 0.97 | 0.98 | 0.98 | |
No tumor | 1.00 | 1.00 | 1.00 | |
Pituitary | 0.98 | 0.99 | 0.98 | |
VGG-16 | Glioma | 0.94 | 0.73 | 0.82 |
Meningioma | 0.72 | 0.88 | 0.79 | |
No tumor | 0.97 | 0.94 | 0.95 | |
Pituitary | 0.90 | 0.93 | 0.92 | |
Inception v3 | Glioma | 0.97 | 0.93 | 0.95 |
Meningioma | 0.92 | 0.92 | 0.92 | |
No tumor | 0.98 | 1.00 | 0.99 | |
Pituitary | 0.96 | 0.98 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, J.; Kubadia, M.; Mangla, M.; Tawde, P. Comparison of Transfer Learning Techniques to Classify Brain Tumours Using MRI Images. Eng. Proc. 2023, 59, 144. https://doi.org/10.3390/engproc2023059144
Jain J, Kubadia M, Mangla M, Tawde P. Comparison of Transfer Learning Techniques to Classify Brain Tumours Using MRI Images. Engineering Proceedings. 2023; 59(1):144. https://doi.org/10.3390/engproc2023059144
Chicago/Turabian StyleJain, Jayneet, Mihika Kubadia, Monika Mangla, and Prachi Tawde. 2023. "Comparison of Transfer Learning Techniques to Classify Brain Tumours Using MRI Images" Engineering Proceedings 59, no. 1: 144. https://doi.org/10.3390/engproc2023059144
APA StyleJain, J., Kubadia, M., Mangla, M., & Tawde, P. (2023). Comparison of Transfer Learning Techniques to Classify Brain Tumours Using MRI Images. Engineering Proceedings, 59(1), 144. https://doi.org/10.3390/engproc2023059144