Identifying Antibiotic-Resistant Mutants in β-Lactamases for Class A and Class B Using Unsupervised Machine Learning †
Abstract
:1. Introduction
2. Literature Review
2.1. Resistance to β-Lactam Drugs
2.2. β-Lactamase Enzymes
2.3. β-Lactamase Inhibitors and Inhibitor Resistance in Class A and Class B β-Lactamases
2.4. Machine Learning in AMR Research
3. Methodology
3.1. Dataset Retrieval
3.2. Data Preprocessing and Visualization
3.3. Algorithm
K-Means Clustering
3.4. Determining K Value Using Elbow and Silhouette Plots
3.4.1. Elbow Plot and Silhouette Plot
3.4.2. Validation of Clusters Using Phylogenetic Tree
4. Results
4.1. Results for Class-A
4.1.1. Feature Engineering (Dimensionality Reduction)
4.1.2. Performance of Clusters (Silhouette Plots)
4.1.3. Validation of Clusters
4.2. Results for Class-B
Validation of Clusters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikaido, A.H. Multidrug resistance in bacteria. Annu. Rev. Biochem. 2009, 78, 119–146. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Allergy and Infectious Diseases. Antimicrobial (Drug) Resistance. Available online: https://www.niaid.nih.gov/research/antimicrobial-resistance (accessed on 17 September 2021).
- Medline Plus. Antibiotics. Available online: https://medlineplus.gov/antibiotics.html#summar (accessed on 17 September 2021).
- Purohit, M.R.; Lindahl, L.F.; Diwan, V.; Mar-rone, G.; Lundborg, C.S. High levels of drug resistance in commensal E. coli in a cohort of children from rural central india. Sci. Rep. 2019, 9, 6682. [Google Scholar] [CrossRef] [PubMed]
- Worthington, R.J.; Melander, C. Overcoming resistance to β-lactam antibiotics. J. Org. Chem. 2013, 78, 4207–4421. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal omega, accurate alignment of very large numbers of sequences. Methods Mol. Biol. 2014, 1079, 105–116. [Google Scholar]
- Bush, K.; Bradford, P.A. β-lactams and β-lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef]
- Bonomo, R.A. β-lactamases: A focus on current challenges. Cold Spring Harb. Perspect. Med. 2017, 7, a025239. [Google Scholar] [CrossRef]
- Yi, H.; Cho, K.H.; Cho, Y.S.; Kim, K.; Nierman, W.C.; Kim, H.S. Twelve positions in a β-lactamase that can expand its substrate spectrum with a single amino acid substitution. PLoS ONE 2012, 7, e37585. [Google Scholar] [CrossRef]
- Williams, J.D. Beta-lactamases and beta-lactamase inhibitors. Int. J. Antimicrob. Agents 1999, 12 (Suppl. S1), S3–S7. [Google Scholar] [CrossRef]
- Bonomo, R.A.; Szabo, D. Mechanisms of multidrug resistance in acinetobacter species and pseudomonas aeruginosa. Clin. Infect. Dis. 2006, 43 (Suppl. S2), S49–S56. [Google Scholar] [PubMed]
- Bush, K. Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.I.; Aqib, A.I.; Seleem, M.N.; Shabbir, M.A.; Hao, H.; Iqbal, Z.; Kulyar, M.F.; Zaheer, T.; Li, K. Genetic basis of molecular mechanisms in β -lactam resistant gram-negative bacteria. Microb. Pathog. 2021, 158, 105040. [Google Scholar] [CrossRef] [PubMed]
- Carcione, D.; Siracusa, C.; Sulejmani, A.; Leoni, V.; Intra, J. Old and new beta-lactamase inhibitors: Molecular structure, mechanism of action, and clinical use. Antibiotics 2021, 10, 995. [Google Scholar] [CrossRef] [PubMed]
- Drawz, S.M.; Bonomo, R.A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 2010, 23, 160–201. [Google Scholar] [CrossRef] [PubMed]
- Sawa, T.; Kooguchi, K.; Moriyama, K. Molecular diversity of extended- spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J. Intensive Care 2020, 8, 13. [Google Scholar] [CrossRef]
- Hidalgo, J.A.; Vinluan, C.M.; Antony, C.M. Ceftazidime/avibactam: A novel cephalosporin/nonbeta-lactam beta-lactamase inhibitor for the treatment of complicated urinary tract infections and complicated intra- abdominal infections. Drug Des. Dev. Ther. 2016, 10, 2379–2386. [Google Scholar]
- Palacios, A.R.; Rossi, M.A.; Mahler, G.S.; Vila, A.J. Metallo-β-lactamase inhibitors inspired on snapshots from the catalytic mechanism. Biomolecules 2020, 10, 854. [Google Scholar] [CrossRef]
- Paetzel, M.; Danel, F.; de Castro, L.; Mosimann, S.C.; Page, M.G.; Strynadka, N.C. Crystal structure of the class d beta-lactamase oxa-10. Nat. Struct. Biol. 2000, 7, 918–925. [Google Scholar] [PubMed]
- Naas, T.; Oueslati, S.; Bonnin, R.A.; Dabos, L.L.; Zavala, A.; Dortet, L.; Retailleau, P.; Iorga, B.I. Beta-lactamase database (bldb)-structure and function. J. Enzym. Inhib. Med. Chem. 2017, 32, 917–919. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, S.D.; Johnstone, M.R.; Ross, P.L.; McLaughlin, R.E.; Olivier, N.B.; Alm, R.A. Avibactam and class c β-lactamases: Mechanism of inhibition, conservation of the binding pocket, and implications for resistance. Antimicrob. Agents Chemother. 2014, 58, 5704–5713. [Google Scholar] [CrossRef] [PubMed]
- Rath, S.L.; Sinha, C.; Kasturi, S.; Mohapatra, S.; Jain, K. An Unsupervised Clustering Algorithm to Cluster the New SARS-CoV-2 Virus Mutation. In Innovations in Computer Science and Engineering; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Durbin, R.; Eddy, S.R.; Krogh, A.; Mitchison, G. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
Cluster Number in n | Average Silhouette Score |
---|---|
2 3 4 5 6 7 8 9 10 11 | 0.651578669 0.838912203 0.732957561 0.671978904 0.677507273 0.711460561 0.73267021 0.740600052 0.75087963 0.742417251 |
Cluster Number in n | Average Silhouette Score |
---|---|
2 3 4 5 6 7 8 | 0.55244447 0.64354531 0.775555367 0.735574773 0.762710067 0.754623539 0.706161611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rath, S.L.; Mohapatra, S.; Gayathri, V. Identifying Antibiotic-Resistant Mutants in β-Lactamases for Class A and Class B Using Unsupervised Machine Learning. Eng. Proc. 2023, 59, 146. https://doi.org/10.3390/engproc2023059146
Rath SL, Mohapatra S, Gayathri V. Identifying Antibiotic-Resistant Mutants in β-Lactamases for Class A and Class B Using Unsupervised Machine Learning. Engineering Proceedings. 2023; 59(1):146. https://doi.org/10.3390/engproc2023059146
Chicago/Turabian StyleRath, Soumya Lipsa, Smaranika Mohapatra, and Veena Gayathri. 2023. "Identifying Antibiotic-Resistant Mutants in β-Lactamases for Class A and Class B Using Unsupervised Machine Learning" Engineering Proceedings 59, no. 1: 146. https://doi.org/10.3390/engproc2023059146
APA StyleRath, S. L., Mohapatra, S., & Gayathri, V. (2023). Identifying Antibiotic-Resistant Mutants in β-Lactamases for Class A and Class B Using Unsupervised Machine Learning. Engineering Proceedings, 59(1), 146. https://doi.org/10.3390/engproc2023059146