Investigation of Nano-Composite Dampers Using Different Nanomaterials in Civil Engineering Structures: A Review †
Abstract
:1. Introduction
- ϰ = ratio of damping, C = coefficient of viscous damping, Ccr = coefficient of critical damping
- ∂ = non-dimensional logarithmic decrement, tanθ = loss tangent where θ is the loss angle
- η = non-dimensional factor of loss, Q = dimensionless resonance amplification or quality factor.
1.1. Damping
1.2. Damping Measurement
1.3. Damping Ratio
- 4.
- c = viscous damping coefficient, cr = coefficient of critical damping of SDOF (single degree of freedom) structure, m = lumped mass, k = stiffness, ω = natural angular frequency, f = natural frequency.
1.3.1. Logarithmic Decrement
- 5.
- yj = jth round of the cycle, yj + 1 = (j + 1)th round of cycle.
1.3.2. Loss Tangent
1.3.3. Equivalent Loss Factor
2. Nanomaterials for Damping
2.1. Development of Nanomaterial-Based Concrete
2.1.1. Nano Alumina (nAl2O3)
2.1.2. Nano Silica (nSiO2)
Logarithmic Decrement δ
2.1.3. Nano Titania (nTiO2)
2.1.4. Carbon Nanotubes (CNTs)
2.1.5. Graphene Oxide
3. Conclusions
4. Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shettar, M.; Kowshik, S.; Hiremath, P.; Sharma, S. Water sorption-desorption-resorption effects on mechanical properties of epoxy-nanoclay nanocomposites. Int. J. Automot. Mech. 2022, 19, 9478–9486. [Google Scholar] [CrossRef]
- Liu, T. Self-Reinforced Damping Concrete and High Damping Structures. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2004. [Google Scholar]
- Benchekchou, B.; Coni, M.; Howarth, H.V.C.; White, R.G. Some aspects of vibration damping improvement in composite materials. Compos. Part B 1998, 29B, 809–817. [Google Scholar] [CrossRef]
- Luo, B.; Bo, Z.; Xie, Y. Microstructure characteristic and damping properties of 6066Al/SiCp composites. J. Cent. South Univ. Technol. 2001, 32, 511–514. [Google Scholar]
- Gu, J.; Zhang, X.; Gu, M. Effect of interphase on the damping capacity of particulate-reinforced metal matrix composites. J. Alloys Compd. 2004, 381, 182–187. [Google Scholar] [CrossRef]
- Adams, R.D.; Maheri, M.R. Damping in advanced polymer-matrix composites. J. Alloys Compd. 2003, 355, 126–130. [Google Scholar] [CrossRef]
- Donaire-Avila, J.; Mollaioli, F.; Lucchini, A.; Benavent-Climent, A. Intensity measures for the seismic response prediction of mid-rise buildings with hysteretic dampers. Eng. Struct. 2015, 102, 278–295. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J. Development of box-shaped steel slit dampers for seismic retrofit of building structures. Eng. Struct. 2017, 150, 934–946. [Google Scholar] [CrossRef]
- Fu, X.; Chung, D.D.L. Vibration damping admixtures for cement. Cem. Concr. Res. 1996, 26, 69–75. [Google Scholar] [CrossRef]
- Chung, D.D.L. Interface-derived extraordinary viscous behavior of exfoliated graphite. Carbon 2014, 68, 646–652. [Google Scholar] [CrossRef]
- Tran, L.Q.N.; Minh, T.N.; Fuentes, C.A.; Chi, T.T.; Van Vuuren, A.W.; Verbose, I. Investigation of microstructure and tensile properties of porous natural coir fiber for use in composite materials. Ind. Crops Prod. 2015, 65, 437–445. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Huang, L.; Kasal, B. Effect of alkali treatment on microstructure and mechanical properties of coir fibers, coir fiber reinforced-polymer composites, and reinforced-cementitious composites. Constr. Build. Mater. 2016, 112, 168–182. [Google Scholar] [CrossRef]
- Long, G.; Yang, J.; Xie, Y. The mechanical characteristics of steam-cured high-strength concrete incorporating lightweight aggregate. Constar. Build. Mater. 2017, 136, 456–464. [Google Scholar] [CrossRef]
- Mevada, H.; Patel, D. Experimental determination of structural damping of different materials. Procedia Eng. 2016, 144, 110–115. [Google Scholar] [CrossRef]
- Chopra, A.K. Dynamics of Structures: Theory and Applications to Earthquake Engineering; Prentice Hall: Englewood Cliffs, NJ, USA, 2001. [Google Scholar]
- Mei, S.; Su, L.; Li, P.; Wang, Y. Material damping of concrete under cyclic axial compression. J. Mater. Civ. Eng. 2018, 30, 1–10. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. Al2O3 nanoparticles in concrete and different curing media. Energy Build. 2011, 43, 1480–1488. [Google Scholar] [CrossRef]
- Chong, P.B.a.K. Nanotechnology and concrete: Research opportunities. In Proceedings of the ACI Session on “Nanotechnology of Concrete: Recent Developments and Future Perspectives”, Denver, CO, USA, 7 November 2006. [Google Scholar]
- Pellenq, R.J.M.; Lequeux, N.; Van Damme, H. Engineering the bonding scheme in C–S–H: The ionocovalent framework. Cem. Concr. Res. 2008, 38, 159–174. [Google Scholar] [CrossRef]
- Remzi Sahi, M.O. New materials for concrete technology: Nano powders. In Proceedings of the 33rd Conference on Our World in Concrete & Structures, Singapore, 25–27 August 2008. [Google Scholar]
- Hou, P.; Qian, J.; Cheng, X.; Shah, S.P. Effects of the pozzolanic reactivity of nanoSiO2 on cement-based materials. Cem. Concr. Compos. 2015, 55, 250–258. [Google Scholar] [CrossRef]
- Yu, R.; Spiesz, P.; Brouwers, H.J.H. Effect of nano-silica on the hydration and microstructure development of Ultra-High-Performance Concrete (UHPC) with a low binder amount. Constr. Build. Mater. 2014, 65, 140–150. [Google Scholar] [CrossRef]
- Adak, D.; Sarkar, M.; Mandal, S. Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Constr. Build. Mater. 2014, 70, 453–459. [Google Scholar] [CrossRef]
- Massa, M.A.; Covarrubias, C.; Bittner, M.; Fuentevilla, I.A.; Capetillo, P.; Von Marttens, A.; Carvajal, J.C. Synthesis of new antibacterial composite coating for titanium based on highly ordered nano porous silica and silver nanoparticles. Mater. Sci. Eng. C 2014, 45, 146–153. [Google Scholar] [CrossRef]
- Morsy, M.S.; Alsayed, S.H.; Aqel, M. Hybrid effect of carbon nanotube and nano clay on physical mechanical properties of cement mortar. Constr. Build. Mater. 2011, 25, 145–149. [Google Scholar] [CrossRef]
- Navarro-Blasco, I.; Perez-Nicolas, M.; Fernandez, J.M.; Duran, A.; Sirera, R.; Alvarez, J.I. Assessment of the interaction of polycarboxylate superplasticizers in hydrated lime pastes modified with nano silica or metakaolin as pozzolanic reactivates. Constr. Build. Mater. 2014, 73, 1–12. [Google Scholar] [CrossRef]
- Jo, B.W.; Kim, C.H.; Tae, G.H.; Park, J.B. Characteristics of cement mortar with nano-SiO2 particles. Constr. Build. Mater. 2007, 21, 1351–1355. [Google Scholar] [CrossRef]
- Rosenqvist, J. Surface Chemistry of Al and Si (Hydr)Oxides, with Emphasis on Nano-Sized Gibbsite (A-Al(OH)3); Department of Chemistry, Inorganic Chemistry, Umea University: Umea, Sweden, 2002. [Google Scholar]
- Ali Nazari, S.R. Improvement compressive strength of concrete in different curing media by Al2O3 nanoparticles. Mater. Sci. Eng. A 2010, 528, 1183–1191. [Google Scholar] [CrossRef]
- Hosseini, P.; Hosseinpourpia, R.; Pajum, A.; Khodavirdi, M.M.; Izadi, H.; Vaezi, A. Effect of nano-particles and amino silane interaction on the performances of cement-based composites: An experimental study. Constr. Build. Mater. 2014, 66, 113–124. [Google Scholar] [CrossRef]
- Fu, X.; Li, X.; Chung, D.D.L. Improving the vibration damping capacity of cement. J. Mater. Sci. 1998, 33, 3601–3605. [Google Scholar] [CrossRef]
- Xu, Y.; Chung, D.D.L. Effects of carbon fibers on the vibration-reduction ability of cement. Cem. Concr. Res. 1999, 29, 1107–1109. [Google Scholar] [CrossRef]
- Xu, Y.; Chung, D.D.L. Improving silica fume cement by using silane. Cem. Concr. Res. 2000, 30, 1305–1311. [Google Scholar] [CrossRef]
- Xu, Y.; Chung, D.D.L. Cement-based materials improved by surface-treated admixtures. ACI Mater. J. 1997, 3, 171–174. [Google Scholar]
- Wang, Y.; Chung, D.D.L. Effects of Sand and Silica Fume on the Vibration Damping Behavior of Cement; Composite Materials Research Laboratory, State University of New York at Buffalo: Buffalo, NY, USA, 1998. [Google Scholar]
- Guo-jun, K.E.; Guo, C.-Q.; Chen, Z.-F. Study on the damping ratio of concrete. J. Build. Mater. 2004, 13, 35–40. [Google Scholar]
- Roopa, A.K.; Hunashyal, A.M.; Patil, A.Y.; Kamadollishettar, A.; Patil, B.; Soudagar, M.E.; Kalam, M.A. Study on Interfacial Interaction of Cement-Based Nanocomposite by Molecular Dynamic Analysis and an RVE Approach. Adv. Civ. Eng. 2023, 2023, 8404335. [Google Scholar] [CrossRef]
- Janczarek, M.; Klapiszewski, J.; Edrzejczak, P.; Klapiszewska, I.; Slosarczyk, A.; Jesionowski, T. Progress of functionalized TiO2 -based nanomaterials in the construction industry: A comprehensive review. Chem. Eng. J. 2022, 430, 132062. [Google Scholar] [CrossRef]
- Hamidi, F.; Aslani, F. TiO2-based Photocatalytic Cementitious Composites: Materials, Properties, Influential Parameters, and Assessment Techniques. Nanomaterials 2019, 9, 1444. [Google Scholar] [CrossRef]
- Castro-Hoyos, A.M.; Maury-Ramírez, M.A.R.; Maury-Ramírez, A. Challenges and Opportunities of Using Titanium Dioxide Photocatalysis on Cement-Based Materials. Coatings 2022, 12, 968. [Google Scholar] [CrossRef]
- Albetran, H.M. Thermal expansion coefficient determination of pure, doped, and co-doped anatase nanoparticles heated in sealed quartz capillaries using in-situ high-temperature synchrotron radiation diffraction. Heliyon 2020, 6, e04501. [Google Scholar] [CrossRef] [PubMed]
- Shafaei, D.; Yang, S.; Berlouis, L.; Minto, J. Multiscale pore structure analysis of nano titanium dioxide cement mortar composite. Mater. Today Commun. 2020, 22, 100779. [Google Scholar] [CrossRef]
- Daniyal, M.; Akhtar, S.; Azam, A. Effect of nano-TiO2 on the properties of cementitious composites under different exposure environments. J. Mater. Res. Technol. 2019, 8, 6158–6172. [Google Scholar] [CrossRef]
- Reshma, T.V.; Manjunatha, M.; Bharath, A.; Tangadagi, R.B.; Vengala, J.; Manjunatha, L. Influence of ZnO and TiO2 on mechanical and durability properties of concrete prepared with and without polypropylene fibers. Materialia 2021, 18, 101138. [Google Scholar] [CrossRef]
- Moro, C.; Francioso, V.; Velay-Lizancos, M. Nano-TiO2 effects on high-temperature resistance of recycled mortars. J. Clean. Prod. 2020, 263, 121581. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S.; Shamekhi, S.F.; Khademno, A. Assessment of the effects of the cement paste composite in the presence of TiO2 nanoparticles. J. Am. Sci. 2010, 6, 43–46. [Google Scholar]
- Jalal, M. Durability enhancement of concrete by incorporating titanium dioxide nanopowder into a binder. J. Am. Sci. 2012, 8, 289–294. [Google Scholar]
- Saffar, K.P.; Najafi, A.R.; Moeinzadeh, M.H.; Sudak, L.J. A finite element study of crack behavior for carbon nanotube reinforced bone cement. World J. Mech. 2013, 3, 13–21. [Google Scholar]
- Dai, R.L.; Liao, W.H. Modeling of carbon nanotube composites for vibration damping. In Nanosensors, Microsensors, and Biosensors and Systems, Volume 6528 of Proceedings of SPIE; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; p. 10. [Google Scholar]
- Tehrani, M.; Safdari, M.M.; Boroujeni, A.Y.; Razavi, Z.; Case, S.W.; Dahmen, K.; Garmestani, H.; Al-Haik, M.S. Hybrid carbon fiber/carbon nanotube composites for structural damping applications. Nanotechnology 2013, 24, 155704. [Google Scholar] [CrossRef]
- Li, W.W.; Ji, W.M.; Liu, Y.; Xing, F.; Liu, Y.K. Damping Property of a Cement-Based Material Containing Carbon Nanotube. Hindawi Publ. Corp. J. Nanomater. 2015, 16, 418. [Google Scholar] [CrossRef]
- Cinquin, J.; Chabert, B.; Chauchard, J.; Morel, E.; Trotignon, J. Characterization of a thermoplastic (polyamide 66) reinforced with unidirectional glass fibres. Matrix additives and fibers surface treatment influence the mechanical and viscoelastic properties. Composites 1990, 21, 141–147. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011, 29, 205–212. [Google Scholar] [CrossRef]
- Kowshik, S.; Shettar, M.; Rangaswamy, N.; Chate, G.; Somdee, P. Effect of nanoclay on mechanical, flammability, and water absorption properties of glass fiber-epoxy composite. Cogent Eng. 2022, 9, 2069070. [Google Scholar] [CrossRef]
- Roopa, A.K.; Hunashyal, A.M. Development and Implementation of Cement-Based Nanocomposite Sensors for Structural Health Monitoring Applications: Laboratory Investigations and Way Forward. Sustainability 2022, 14, 12452. [Google Scholar] [CrossRef]
- Mohammed, A.; Sanjayan, J.G.; Duan, W.H.; Nazari, A. Incorporating graphene oxide in cement composites: A study of transport properties. Constr. Build. Mater. 2015, 84, 341–347. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalgar, S.R.; Hunashyal, A.M.; Kuri, R.A.; Dhaduti, M.S.; Mathad, S.N. Investigation of Nano-Composite Dampers Using Different Nanomaterials in Civil Engineering Structures: A Review. Eng. Proc. 2023, 59, 188. https://doi.org/10.3390/engproc2023059188
Jalgar SR, Hunashyal AM, Kuri RA, Dhaduti MS, Mathad SN. Investigation of Nano-Composite Dampers Using Different Nanomaterials in Civil Engineering Structures: A Review. Engineering Proceedings. 2023; 59(1):188. https://doi.org/10.3390/engproc2023059188
Chicago/Turabian StyleJalgar, Sandhya. R., Anand M. Hunashyal, Roopa A. Kuri, Madhumati. S. Dhaduti, and Shridhar N. Mathad. 2023. "Investigation of Nano-Composite Dampers Using Different Nanomaterials in Civil Engineering Structures: A Review" Engineering Proceedings 59, no. 1: 188. https://doi.org/10.3390/engproc2023059188
APA StyleJalgar, S. R., Hunashyal, A. M., Kuri, R. A., Dhaduti, M. S., & Mathad, S. N. (2023). Investigation of Nano-Composite Dampers Using Different Nanomaterials in Civil Engineering Structures: A Review. Engineering Proceedings, 59(1), 188. https://doi.org/10.3390/engproc2023059188