Biodegradability of Musa Acuminata (Banana)-Fiber-Reinforced Bio-Based Epoxy Composites: The Influence of Montmorillonite Clay †
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Composite Fabrication
2.3. Scanning Electron Microscopy Analysis
2.4. Biodegradability Testing
2.5. Statistical Analysis
3. Results and Discussion
3.1. Morphological Result
3.2. Biodegradability Result
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajak, D.K.; Wagh, P.H.; Linul, E. A Review on Synthetic Fibers for Polymer Matrix Composites: Performance, Failure Modes and Applications. Materials 2022, 15, 4790. [Google Scholar] [CrossRef] [PubMed]
- Kangishwar, S.; Radhika, N.; Sheik, A.A.; Chavali, A.; Hariharan, S. A comprehensive review on polymer matrix composites: Material selection, fabrication, and application. Polym. Bull. 2023, 80, 47–87. [Google Scholar] [CrossRef]
- Karataş, M.A.; Gökkaya, H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def. Technol. 2018, 14, 318–326. [Google Scholar] [CrossRef]
- Begum, S.; Fawzia, S.; Hashmi, M.S.J. Polymer matrix composite with natural and synthetic fibres. Adv. Mater. Process. Technol. 2020, 6, 547–564. [Google Scholar] [CrossRef]
- Shaker, K.; Nawab, Y.; Jabbar, M. Bio-composites: Eco-friendly Substitute of Glass Fiber Composites. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer: Cham, The Netherlands, 2021; pp. 151–175. [Google Scholar] [CrossRef]
- Nagalakshmaiah, M.; Afrin, S.; Malladi, R.P.; Elkoun, S.; Robert, M.; Ansari, M.A.; Svedberg, A.; Karim, Z. Biocomposites: Present trends and challenges for the future. Green Compos. Automot. Appl. 2018, 197–215. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Hinrichsen, G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000, 276–277, 1–24. [Google Scholar] [CrossRef]
- Naik, N.; Sooriyaperakasam, N.; Abeykoon, Y.K.; Wijayarathna, Y.S.; Pranesh, G.; Roy, S.; Negi, R.; Aakif, B.K.; Kulatunga, A.; Kandasamy, J. Sustainable Green Composites: A Review of Mechanical Characterization, Morphological Studies, Chemical Treatments, and their Processing Methods. J. Comput. Mech. Manag. 2022, 1, 66–81. [Google Scholar] [CrossRef]
- Kaushik, Y.; Sooriyaperakasam, N.; Rathee, U.; Naik, N. A Mini Review of Natural Cellulosic Fibers: Extraction, Treatment and Characterization Methods. J. Comput. Mech. Manag. 2023, 2, 23057. [Google Scholar] [CrossRef]
- Singh, S.; Naik, N.; Sooriyaperakasam, N.; Iyer, T.; Agarwal, C.; Tirupathi, J.; Al Abdali, M. A Comprehensive Review of Banana Fiber-Reinforced Composites: Properties, Processing and Applications. J. Comput. Mech. Manag. 2022, 1, 36–49. [Google Scholar] [CrossRef]
- Gupta, U.S.; Tiwari, S. Study on the Development of Banana Fibre Reinforced Polymer Composites for Industrial and Tribological Applications: A Review. In Proceedings of the 2nd International Conference on Emerging trends in Manufacturing, Engines and Modelling (ICEMEM -2019), Mumbai, India, 23–24 December 2019. [Google Scholar] [CrossRef]
- Imoisili, P.E.; Jen, T.C. Modelling and optimization of the impact strength of plantain (Musa paradisiacal) fibre/MWCNT hybrid nanocomposite using response surface methodology. J. Mater. Res. Technol. 2021, 13, 1946–1954. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Asim, M. Recent Advances in Nanoclay/Natural Fibers Hybrid Composites. Eng. Mater. 2016, 1–28. [Google Scholar] [CrossRef]
- Prabhakar, K.; Debnath, S.; Ganesan, R.; Palanikumar, K. A review of mechanical and tribological behaviour of polymer composite materials. In Proceedings of the 3rd International Conference on Science, Technology, and Interdisciplinary Research (IC-STAR), Lampung, Indonesia, 18–20 September 2017. [Google Scholar] [CrossRef]
- Rafiee, R.; Shahzadi, R. Mechanical Properties of Nanoclay and Nanoclay Reinforced Polymers: A Review. Polym. Compos. 2019, 40, 431–445. [Google Scholar] [CrossRef]
- Rajeshkumar, G.; Seshadri, S.A.; Ramakrishnan, S.; Sanjay, M.R.; Siengchin, S.; Nagaraja, K.C. A comprehensive review on natural fiber/nano-clay reinforced hybrid polymeric composites: Materials and technologies. Polym. Compos. 2021, 42, 3687–3701. [Google Scholar] [CrossRef]
- Albdiry, M.T.; Yousif, B.F.; Ku, H.; Lau, K.T. A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites. J. Compos. Mater. 2013, 47, 1093–1115. [Google Scholar] [CrossRef]
- Hashemifard, S.A.; Ismail, A.F.; Matsuura, T. Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal. Chem. Eng. J. 2011, 170, 316–325. [Google Scholar] [CrossRef]
- Mi, S.; Toros, A.; Graziosi, T.; Quack, N. Non-contact polishing of single crystal diamond by ion beam etching. Diam. Relat. Mater. 2019, 92, 248–252. [Google Scholar] [CrossRef]
- Di Mauro, E.; Rho, D.; Santato, C. Biodegradation of bio-sourced and synthetic organic electronic materials towards green organic electronics. Nat. Commun. 2021, 12, 3167. [Google Scholar] [CrossRef]
- da Silva, S.A.; Hinkel, E.W.; Lisboa, T.C.; Selistre, V.V.; da Silva, A.J.; da Silva, L.O.F.; Faccin, D.J.L.; Cardozo, N.S.M. A biostimulation-based accelerated method for evaluating the biodegradability of polymers. Polym. Test. 2020, 91, 106732. [Google Scholar] [CrossRef]
- Kim, T.K. T test as a parametric statistic. Korean J. Anesthesiol. 2015, 68, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Kowshik, S.; Gowrishankar, M.C.; Shettar, M.; Bhat, R.; Gurumurthy, B.M. Durability prediction analysis on mechanical properties of GFRP upon immersion in water at ambient temperature. Cogent Eng. 2021, 8, 1956869. [Google Scholar] [CrossRef]
Sample | Incubation Period | Initial Weight, Wi (g) | Final Weight, Wf (g) | Weight Loss (g) | Biodegradability (%) |
---|---|---|---|---|---|
Bio-based composite without nanoclay | 0 | 5 | 5 | 0 | 0 |
10 | 5 | 4.83 | 0.17 | 3.4 | |
20 | 5 | 4.69 | 0.31 | 6.2 | |
30 | 5 | 4.48 | 0.52 | 10.4 | |
40 | 5 | 4.27 | 0.73 | 14.6 | |
50 | 5 | 4.13 | 0.87 | 17.4 | |
Bio-based composite with 2.5% MMT nanoclay | 60 | 5 | 4.04 | 0.96 | 19.2 |
0 | 5 | 5 | 0 | 0 | |
10 | 5 | 4.85 | 0.15 | 3 | |
20 | 5 | 4.71 | 0.29 | 5.8 | |
30 | 5 | 4.51 | 0.49 | 9.8 | |
40 | 5 | 4.3 | 0.7 | 14 | |
50 | 5 | 4.16 | 0.84 | 16.8 | |
60 | 5 | 4.07 | 0.93 | 18.6 |
Composite Type | N | Mean | St Dev | SE Mean |
---|---|---|---|---|
With MMT Nanoclay | 7 | 9.71 | 7.10 | 2.7 |
Without Nanoclay | 7 | 10.17 | 7.29 | 2.8 |
Difference | 95% CI for Difference |
---|---|
−0.46 | (−8.92, 8.00) |
Null Hypothesis | Alternative Hypothesis | T-Value | DF | p-Value |
---|---|---|---|---|
H₀: μ₁ − µ₂ = 0 | H₁: μ₁ − µ₂ ≠ 0 | −0.12 | 11 | 0.907 |
Predictor | Coefficient | Std. Error | T-Value | p-Value | VIF |
---|---|---|---|---|---|
Intercept | −0.229 | 0.396 | −0.58 | 0.576 | |
Incubation Time (Days) | 0.33143 | 0.00961 | 34.48 | 0.000 | 1.00 |
Composite Type | 0.457 | 0.384 | 1.19 | 0.259 | 1.00 |
S | R-sq | R-sq (adj) | R-sq (pred) |
---|---|---|---|
0.719307 | 99.08% | 98.92% | 98.47% |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 2 | 615.863 | 307.931 | 595.15 | 0.000 |
Incubation Time (Days) | 1 | 615.131 | 615.131 | 1188.88 | 0.000 |
Composite Type | 1 | 0.731 | 0.731 | 1.41 | 0.259 |
Error | 11 | 5.691 | 0.517 | ||
Total | 13 | 621.554 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naik, N.; Bhat, R.; Shivamurthy, B.; Thimmappa, B.H.S.; Shetty, N.; Kaushik, Y. Biodegradability of Musa Acuminata (Banana)-Fiber-Reinforced Bio-Based Epoxy Composites: The Influence of Montmorillonite Clay. Eng. Proc. 2023, 59, 6. https://doi.org/10.3390/engproc2023059006
Naik N, Bhat R, Shivamurthy B, Thimmappa BHS, Shetty N, Kaushik Y. Biodegradability of Musa Acuminata (Banana)-Fiber-Reinforced Bio-Based Epoxy Composites: The Influence of Montmorillonite Clay. Engineering Proceedings. 2023; 59(1):6. https://doi.org/10.3390/engproc2023059006
Chicago/Turabian StyleNaik, Nithesh, Ritesh Bhat, B. Shivamurthy, B.H.S. Thimmappa, Nagaraja Shetty, and Yashaarth Kaushik. 2023. "Biodegradability of Musa Acuminata (Banana)-Fiber-Reinforced Bio-Based Epoxy Composites: The Influence of Montmorillonite Clay" Engineering Proceedings 59, no. 1: 6. https://doi.org/10.3390/engproc2023059006
APA StyleNaik, N., Bhat, R., Shivamurthy, B., Thimmappa, B. H. S., Shetty, N., & Kaushik, Y. (2023). Biodegradability of Musa Acuminata (Banana)-Fiber-Reinforced Bio-Based Epoxy Composites: The Influence of Montmorillonite Clay. Engineering Proceedings, 59(1), 6. https://doi.org/10.3390/engproc2023059006