Preparation of Rotor Geometry for Setting up Numerical Model of Flow in Refining Ladle †
Abstract
:1. Introduction
2. Basic FDU Geometry
Geometry of the Rotor System
- Cleaning and simplifying the scanned data, defining the coordinate system, placing the geometry into a coordinate system. This step is identical for all rotors, regardless of the number of cycles;
- Converting a triangular mesh to a purely square mesh;
- Converting a square mesh to a 3D CAD model.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Myslivec, T. Physico-Chemical Bases of Steel Industry; SNTL: Prague, Czech Republic, 1971. [Google Scholar]
- Prášil, T.; Socha, L.; Gryc, K.; Sviželová, J.; Saternus, M.; Merder, T.; Pieprzyca, J.; Gráf, M. Impact of Rotor Design on Its Wear and Work Efficiency of the Aluminum Refining Process. Metals 2022, 12, 1803. [Google Scholar] [CrossRef]
- Socha, L.; Prášil, T.; Gryc, K.; Sviželová, J.; Saternus, M.; Merder, T.; Pieprzyca, J.; Nuska, P. Research on the impact of rotor wear on the effectiveness of the aluminium refining process. Sci. Rep. 2023, 13, 17758. [Google Scholar] [CrossRef] [PubMed]
- Bul’ko, B.; Molnár, M.; Demeter, P. Physical Modeling of Different Configurations of a Tundish for Casting Grades of Steel that Must Satisfy Stringent Requirements on Quality. Metallurgist 2014, 57, 976–980. [Google Scholar] [CrossRef]
- Bul’ko, B.; Molnár, M.; Demeter, P.; Baricová, D.; Pribulová, A.; Futáš, P. Study of the Influence of Intermix Conditions on Steel Cleanliness. Metals 2018, 8, 852. [Google Scholar] [CrossRef]
- Rega, V.; Molnár, M.; Jusko, M.; Buľko, B.; Kijac, J.; Demeter, P. Impact of cast speed on the occurrence of the non-metallic inclusions in steel. Acta Metall. Slovaca 2016, 22, 4–13. [Google Scholar] [CrossRef]
- Molnár, M.; Tréfa, G.; Hertneky, S.; Beháň, B.; Steranka, E.; Rega, V.; Jusko, M.; Legemza, J.; Buľko, B.; Demeter, P. Influence of chemical reheating at rh degasser on cleanliness of if steel grades. Acta Metall. Slovaca 2016, 22, 95–101. [Google Scholar] [CrossRef]
- Baricová, D.; Pribulová, A.; Futáš, P.; Buľko, B.; Demeter, P. Change of the Chemical and Mineralogical Composition of the Slag during Oxygen Blowing in the Oxygen Converter Process. Metals 2018, 8, 844. [Google Scholar] [CrossRef]
- Cao, Q.; Nastac, L. Mathematical Modeling of the Multiphase Flow and Mixing Phenomena in a Gas-Stirred Ladle: The Effect of Bubble Expansion. JOM 2018, 70, 2071–2081. [Google Scholar] [CrossRef]
- Abreu-López, D.; Amaro-Villeda, A.; Acosta-González, F.A.; González-Rivera, C.; Ramírez-Argáez, M.A. Effect of the Impeller Design on Degasification Kinetics Using the Impeller Injector Technique Assisted by Mathematical Modeling. Metals 2017, 7, 132. [Google Scholar] [CrossRef]
- Kuglin, K.; Szucki, M.; Pieprzyca, J.; Genthe, S.; Merder, T.; Kalisz, D. Physical and Numerical Modeling of the Impeller Construction Impact on the Aluminum Degassing Process. Materials 2022, 15, 5273. [Google Scholar] [CrossRef] [PubMed]
- Saternus, M.; Merder, T. Numerical and Physical Modelling of Aluminium Refining Process Conducted in URO-200 Reactor. Solid State Phenom. 2012, 191, 3–12. [Google Scholar] [CrossRef]
- Gómez, E.R.; Zenit, R.; Rivera, C.G.; Trápaga, G.; Ramírez-Argáez, M.A. Mathematical Modeling of Fluid Flow in a Water Physical Model of an Aluminum Degassing Ladle Equipped with an Impeller-Injector. Metall. Mater. Trans. B 2013, 44, 423–435. [Google Scholar] [CrossRef]
- Sviželová, J.; Tkadlečková, M.; Michalek, K.; Walek, J.; Saternus, M.; Pieprzyca, J.; Merder, T. Numerical Modelling of Metal Melt Refining Process in Ladle with Rotating Impeller and Breakwaters. Arch. Metall. Mater. 2019, 64, 654–664. [Google Scholar] [CrossRef]
- Yamamoto, T.; Suzuki, A.; Komarov, S.V.; Ishiwata, Y. Investigation of impeller design and flow structures in mechanical stirring of molten aluminum. J. Mat. Process. Technol. 2018, 261, 164–172. [Google Scholar] [CrossRef]
- Maldonado, L.; Barron, M.; Miranda, D. Nitrogen Injection in Molten Aluminum in a Tank Degasser. World J. Eng. Technol. 2018, 6, 685–695. [Google Scholar] [CrossRef]
- Abreu-López, D.; Dutta, A.; Camacho-Martínez, J.L.; Trápaga-Martínez, G.; Ramírez-Argáez, M.A. Mass Transfer Study of a Batch Aluminum Degassing Ladle with Multiple Designs of Rotating Impellers. JOM 2018, 70, 2958–2967. [Google Scholar] [CrossRef]
- Warke, V.S.; Tryggvason, G.; Makhlouf, M.M. Mathematical modeling and computer simulation of molten metal cleansing by the rotating impeller degasser: Part I. Fluid flow. J. Mater. Proces. Technol. 2005, 168, 112–118. [Google Scholar] [CrossRef]
- Wan, B.; Chen, W.; Mao, M.; Fu, Z.; Zhu, D. Numerical simulation of a stirring purifying technology for aluminum melt. J. Mat. Process. Technol. 2018, 251, 330–342. [Google Scholar] [CrossRef]
- Grieves, M.A.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems; Kahlen, F.J., Flumerfelt, S., Alves, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Curtis, S.K.; Mattson, C.A.; Harston, S.P. On Barriers to Reverse Engineering Mechanical Components. In Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, QC, Canada, 15–18 August 2010; Volume 5. [Google Scholar]
Rotor Type | Parameters of Refining Process | Rotor Design | ||
---|---|---|---|---|
A | Material | Graphite | ||
Refining time | 180 s | |||
Speed | 350 rpm | |||
N flow rate | 17 Nl∙min−1 | |||
Working height | 160 mm |
Rotor | Regime | Cycles | Shaft Volume (mm3) | Rotor Volume (mm3) | Loss of Material Shaft (%) | Loss of Material Rotor (%) |
---|---|---|---|---|---|---|
A | HP | 0 | 3,637,275.947 | 2,030,257.657 | 0% | 0% |
HP | 739 | 2,907,731.577 | 693,206.579 | 20.06% | 65.86% | |
HP | 936 | 3,524,843.212 | 876,099.357 | 3.09% | 56.85% | |
HP | 1152 | 3,446,136.794 | 918,924.816 | 5.26% | 54.74% | |
HP | 1185 | 3,364,399.409 | 791,155.046 | 7.50% | 61.03% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manoch, L.; Socha, L.; Sviželová, J.; Gryc, K.; Mohamed, A. Preparation of Rotor Geometry for Setting up Numerical Model of Flow in Refining Ladle. Eng. Proc. 2024, 64, 13. https://doi.org/10.3390/engproc2024064013
Manoch L, Socha L, Sviželová J, Gryc K, Mohamed A. Preparation of Rotor Geometry for Setting up Numerical Model of Flow in Refining Ladle. Engineering Proceedings. 2024; 64(1):13. https://doi.org/10.3390/engproc2024064013
Chicago/Turabian StyleManoch, Lukáš, Ladislav Socha, Jana Sviželová, Karel Gryc, and Adnan Mohamed. 2024. "Preparation of Rotor Geometry for Setting up Numerical Model of Flow in Refining Ladle" Engineering Proceedings 64, no. 1: 13. https://doi.org/10.3390/engproc2024064013
APA StyleManoch, L., Socha, L., Sviželová, J., Gryc, K., & Mohamed, A. (2024). Preparation of Rotor Geometry for Setting up Numerical Model of Flow in Refining Ladle. Engineering Proceedings, 64(1), 13. https://doi.org/10.3390/engproc2024064013