Comparative Analysis of Reduced Commensurate Fractional-Order Interval System Based on Artificial Bee Colony Method †
Abstract
:1. Introduction
2. A Summary of ABC Optimization
3. Problem Statement
4. Numerical Examples
4.1. Example 1
4.2. Example 2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schilders, W.H.; Van der Vorst, H.A.; Rommes, J. Model order reduction theory, research, aspects and applications. In The European Consortium for Mathematics in Industry; Springer: Berlin/Heidelberg, Germany, 2008; Volume 13. [Google Scholar]
- Lu, K.; Zhang, K.; Zhang, H.; Gu, X.; Jin, Y.; Zhao, S.; Fu, C.; Yang, Y. A Review of Model Order Reduction Methods for Large-Scale Structure Systems. Shock. Vib. 2021, 19, 6631180. [Google Scholar] [CrossRef]
- Sharma, M.; Sachan, A.; Kumar, D. Order reduction of higher order interval systems by stability preservation approach. In Proceedings of the 2014 International Conference on Power, Control and Embedded Systems (ICPCES), Allahabad, India, 26–28 December 2014. [Google Scholar]
- Ismail, O.; Bandyopadhyay, B.; Gorez, R. Discrete interval system reduction using pade approximation to allow retention. IEEE Trans. Circuits Syst.—I Fundam. Theory Appl. 1997, 44, 1075–1078. [Google Scholar] [CrossRef]
- Aoki, M. Control of large-scale dynamic systems by aggregation. IEEE Trans. Autom. Control 1968, 13, 246–253. [Google Scholar] [CrossRef]
- Saxena, S.; Yogesh, V.; Arya, P.P. Reduced-Order Modelling of Commensurate Fractional-Order Systems. In Proceedings of the 14th International Conference on Control, Automation, Robotics & Vision, Phuket, Thailand, 13–15 November 2016. [Google Scholar]
- Bandyopadhyay, B.; Ismail, O.; Gorez, R. Routh-Pade approximation for interval systems. IEEE Trans. Autom. Control. 1994, 39, 2454–2456. [Google Scholar] [CrossRef]
- Gunantara, N.; Nurweda Putra, I. The Characteristics of Metaheuristic Method in Selection of Path Pairs on Multi criteria Ad Hoc Networks. J. Comput. Netw. Commun. 2019, 2019, 7983583. [Google Scholar]
- Ozkaya, U.; Gunes, F. A modified particle swarm optimization algorithm and its application to the multi objective FET modelling problem. Turk. J. Electr. Eng. Comput. Sci. 2012, 20, 263–271. [Google Scholar]
- Jain, S.; Hote, Y.V.; Saxena, S. Fractional Order PID Design Using Big Bang–Big Crunch Algorithm and Order Reduction: Application to Load Frequency Control. Electr. Power Compon. Syst. 2021, 49, 624–636. [Google Scholar] [CrossRef]
- Fidanova, S.; Paprzycki, M.; Roeva, O. Hybrid GA-ACO algorithm for a model parameters identification problem. In Proceedings of the Federated Conference on Computer Science and Information Systems, Warsaw, Poland, 7–10 September 2014; pp. 413–420. [Google Scholar]
- Pan, S.; Pal, J. Reduced order modelling of discrete-time systems. Appl. Math. Model. 1996, 19, 133–138. [Google Scholar] [CrossRef]
- Jain, S.; Hote, Y.V.; Saxena, S. Model order reduction of commensurate fractional order systems using big-bang big-crunch algorithm. IETE Tech. Rev. 2020, 37, 453–464. [Google Scholar] [CrossRef]
- Kumar, K.K.; Prasad, C.; Korada, S.R.; Rao, B.S. Application of modified least squares method for order reduction of commensurate higher order fractional systems. Indones. J. Electr. Eng. Inform. 2020, 8, 94–102. [Google Scholar]
- Sondhi, S.; Hote, Y.V. Relative stability test for fractional order interval systems using Kharitonov’s theorem. J. Control Autom. Electr. Syst. 2015, 27, 1–9. [Google Scholar] [CrossRef]
- Bandyopadhyay, B.; Sriram, V.; Shingare, P. Stable γ—δ Routh approximation of interval systems using kharitonov’s polynomials. Int. J. Inf. Syst. Sci. 2008, 4, 348–361. [Google Scholar]
- Anand, N.V.; Kumar, M.S.; Rao, R.S. Model Reduction of Linear Interval Systems Using Kharitonov’s Polynomials. In Proceedings of the 2011 International Conference on Energy, Automation and Signal, Bhubaneswar, India, 28–30 December 2011. [Google Scholar]
- Kumar, K.K.; Sastry, G.V.K.R. A new method for order reduction of high order interval systems using least squares method. Int. J. Eng. Res. Appl. 2012, 2, 156–162. [Google Scholar]
- Kiran Kumar, K.; Sangeeta, K.; Prasad, C. A New Algorithm for Reduction of High Order Commensurate Non-Integer Interval Systems. In Innovative Product Design and Intelligent Manufacturing Systems; Springer Lecture Notes in Mechanical Engineering; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Mahanta, G.B.; Deepak, B.B.V.L.; Biswal, B.B.; Rout, A. Optimal design of a parallel robotic gripper using enhanced multi-objective ant lion optimizer with a sensitivity analysis approach. Assem. Autom. 2020, 40, 703–721. [Google Scholar] [CrossRef]
- Tanwar, N.S.; Bhatt, R.; Parmar, G. Order Reduction of Linear Continuous Time Interval System using Mixed Evolutionary Technique. In Proceedings of the International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), Ramanathapuram, India, 25–27 May 2016. [Google Scholar]
- Kumar, K.K.; Ramarao, G.; Kumar, P.P.; Nuvvula, R.S.; Colak, I.; Khan, B.; Hossain, M.A. Reduction of High Dimensional Noninteger Commensurate Systems Based on Differential Evolution. Int. Trans. Electr. Energy Syst. 2023, 2023, 5911499. [Google Scholar] [CrossRef]
- Bansal, J.C.; Sharma, H.; Arya, K.V. Model order reduction of single input single output systems using artificial bee colony optimization algorithm. In Nature Inspired Cooperative Strategies for Optimization; Springer: Berlin/Heidelberg, Germany, 2011; Volume 387, pp. 85–100. [Google Scholar]
- Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009, 214, 108–132. [Google Scholar] [CrossRef]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-tr06; Erciyes University Press: Erciyes, Turkey, 2005. [Google Scholar]
Example 1 | ISE for Impulse Response | ISE for Step Response | RISE for Step Response | |
---|---|---|---|---|
Original with respect to proposal method | L.B | 1.000000 | 0.100000 | 0.010000 |
U.B | 1.217891 | 0.289190 | 0.042670 | |
Original with respect to gamma-delta method | L.B | 3.357806 | 2.435341 | 0.358393 |
U.B | 2.417664 | 0.879348 | 0.129747 |
Example 1 | Rise Time | Settling Time | |
---|---|---|---|
Original response | L.B | 0.02 | 1.96 |
U.B | 0.034 | 2.077 | |
Proposed method response | L.B | 0.05 | 1.753 |
U.B | 0.034 | 2.077 | |
Gamma-delta method | L.B | 0.21 | 3.01 |
U.B | 0.037 | 2.12 |
Example 2 | Rise Time | Settling Time | Delay Time | |
---|---|---|---|---|
Original system | L.B | 2.07 | 7.104 | 0.710 |
U.B | 2.013 | 7.473 | 0.688 | |
Proposed method | L.B | 2.037 | 7.006 | 0.7041 |
U.B | 1.949 | 7.245 | 0.5731 | |
Least squares method | L.B | 1.925 | 7.915 | 1.109 |
U.B | 1.775 | 7.702 | 0.699 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, K.K.; Ramarao, G.; Suneetha, G.; Rao, B.S. Comparative Analysis of Reduced Commensurate Fractional-Order Interval System Based on Artificial Bee Colony Method. Eng. Proc. 2024, 66, 45. https://doi.org/10.3390/engproc2024066045
Kumar KK, Ramarao G, Suneetha G, Rao BS. Comparative Analysis of Reduced Commensurate Fractional-Order Interval System Based on Artificial Bee Colony Method. Engineering Proceedings. 2024; 66(1):45. https://doi.org/10.3390/engproc2024066045
Chicago/Turabian StyleKumar, Kalyana Kiran, Gandi Ramarao, Gangu Suneetha, and Budi Srinivasa Rao. 2024. "Comparative Analysis of Reduced Commensurate Fractional-Order Interval System Based on Artificial Bee Colony Method" Engineering Proceedings 66, no. 1: 45. https://doi.org/10.3390/engproc2024066045
APA StyleKumar, K. K., Ramarao, G., Suneetha, G., & Rao, B. S. (2024). Comparative Analysis of Reduced Commensurate Fractional-Order Interval System Based on Artificial Bee Colony Method. Engineering Proceedings, 66(1), 45. https://doi.org/10.3390/engproc2024066045