Training of Machine Learning Models for Recurrence Prediction in Patients with Respiratory Pathologies †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set Description
2.2. Machine Learning Algorithms
2.2.1. Linear Discriminant Analysis
2.2.2. Quadratic Discriminant Analysis
2.2.3. K-Nearest Neighbors
2.2.4. Decision Trees
3. Results and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Pham, T.; Tran, T.; Phung, D.; Venkatesh, S. Predicting healthcare trajectories from medical records: A deep learning approach. J. Biomed. Inform. 2017, 69, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Steinbach, M.; Kumar, V.; Simon, G. Mining Electronic Health Records (EHRs): A Survey. ACM Comput. Surv. 2018, 50, 85:1–85:40. [Google Scholar] [CrossRef]
- Luo, Y.; Szolovits, P.; Dighe, A.S. Using machine learning to predict laboratory test results. Am. J. Clin. Pathol. 2016, 145, 778–788. [Google Scholar] [CrossRef] [Green Version]
- Shickel, B.; Tighe, P.J.; Bihorac, A.; Rashidi, P. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J. Biomed. Health Inform. 2018, 22, 1589–1604. [Google Scholar] [CrossRef] [PubMed]
- Guerra Tort, C.; Aguiar Pulido, V.; Suárez Ulloa, V.; Docampo Boedo, F.; López Gestal, J.M.; Pereira Loureiro, J. Electronic Health Records Exploitation Using Artificial Intelligence Techniques. Proceedings 2020, 54, 60. [Google Scholar] [CrossRef]
- Izenman, A.J. Linear Discriminant Analysis. In Modern Multivariate Statistical Techniques. Springer Texts in Statistics; Springer: New York, NY, USA, 2013. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, A.M.; Tort, C.G.; Ulloa, V.S.; Gestal, J.M.L.; Pereira, J.; Pulido, V.A. Training of Machine Learning Models for Recurrence Prediction in Patients with Respiratory Pathologies. Eng. Proc. 2021, 7, 20. https://doi.org/10.3390/engproc2021007020
Rodríguez AM, Tort CG, Ulloa VS, Gestal JML, Pereira J, Pulido VA. Training of Machine Learning Models for Recurrence Prediction in Patients with Respiratory Pathologies. Engineering Proceedings. 2021; 7(1):20. https://doi.org/10.3390/engproc2021007020
Chicago/Turabian StyleRodríguez, Ainhoa Molinero, Carla Guerra Tort, Victoria Suárez Ulloa, José M. López Gestal, Javier Pereira, and Vanessa Aguiar Pulido. 2021. "Training of Machine Learning Models for Recurrence Prediction in Patients with Respiratory Pathologies" Engineering Proceedings 7, no. 1: 20. https://doi.org/10.3390/engproc2021007020
APA StyleRodríguez, A. M., Tort, C. G., Ulloa, V. S., Gestal, J. M. L., Pereira, J., & Pulido, V. A. (2021). Training of Machine Learning Models for Recurrence Prediction in Patients with Respiratory Pathologies. Engineering Proceedings, 7(1), 20. https://doi.org/10.3390/engproc2021007020