Advanced Lime Mortars for Historical Architectural Structures †
Abstract
:1. Introduction
2. Classification of Additives in Lime Mortar
3. Mechanical, Physical and Chemical Properties of Advanced Lime Mortar
4. Discussion and Recommendations for the Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sağın, E.U.; Duran, H.E.; Böke, H. Lime mortar technology in ancient eastern Roman provinces. J. Archaeol. Sci. Rep. 2021, 39, 103132. [Google Scholar]
- Moropoulou, A.; Bakolas, A.; Bisbikou, K. Investigation of the technology of historic mortars. J. Cult. Hertiage 2000, 1, 45–58. [Google Scholar] [CrossRef]
- Papayianni, I.; Pachta, V. Experimental study on the performance of lime-based grouts used in consolidating Historic Masonries. Mater. Struct. 2015, 48, 111–2121. [Google Scholar] [CrossRef]
- Forster, A.M.; Válek, J.; Hughes, J.J.; Pilcher, N. Lime binders for the repair of historic buildings: Considerations for CO2 abatement. J. Clean. Prod. 2020, 252, 119802. [Google Scholar] [CrossRef]
- Dimou, A.-E.; Metaxa, Z.S.; Kourkoulis, S.K.; Alexopoulos, N.D. Piezoresistive Properties of Natural Hydraulic Lime Binary Pastes with Incorporated Carbon-Based Nanomaterials under Cyclic Compressive Loadings. Nanomaterials 2022, 12, 3695. [Google Scholar] [CrossRef]
- Dimou, A.E.; Asimakopoulos, G.; Karatasios, I.; Gournis, D.; Metaxa, Z.S.; Kourkoulis, S.K.; Alexopoulos, N.D. Self-diagnostic lime-pozzolan-cement restoration nanocomposites: Effect of graphene modification and cyclic loading level under compression. Dev. Built Environ. 2022, 10, 100068. [Google Scholar] [CrossRef]
- Dimou, A.E.; Charalampidou, C.M.; Metaxa, Z.S.; Kourkoulis, S.K.; Karatasios, I.; Asimakopoulos, G.; Alexopoulos, N.D. Mechanical and electrical properties of hydraulic lime pastes reinforced with carbon nanomaterials. Procedia Struct. Integr. 2020, 28, 1694–1701. [Google Scholar] [CrossRef]
- Fantidis, J.G.; Nicolaou, G.E.; Tsakalos, G.; Thysiadou, A. The comparison of five proton linac beams in order to set up a thermal neutron radiography installation. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1032, 012046. [Google Scholar] [CrossRef]
- Thomoglou, A.K.; Falara, M.G.; Voutetaki, M.E.; Fantidis, J.G.; Tayeh, B.A.; Chalioris, C.E. Electromechanical properties of multi-reinforced self-sensing cement-based mortar with MWCNTs, CFs, and PPs. Constr. Build. Mater. 2023, 400, 132566. [Google Scholar] [CrossRef]
- Thomoglou, A.K.; Fantidis, J.G.; Voutetaki, M.E.; Metaxa, Z.S.; Chalioris, C.E. Mechanical Characterization of Nano-Reinforced Mortar: X-ray Micro-CT for 3D Imaging of Microstructure. Eng. Proc. 2023, 41, 4. [Google Scholar] [CrossRef]
- Manoharan, A.; Umarani, C. Properties of air lime mortar with bio-additives. Sustainability 2022, 14, 8355. [Google Scholar] [CrossRef]
- Drougkas, A.; Sarhosis, V.; Basheer, M.; D’Alessandro, A.; Ubertini, F. Design of a smart lime mortar with conductive micro and nano fillers for structural health monitoring. Constr. Build. Mater. 2023, 367, 130024. [Google Scholar] [CrossRef]
- Fang, S.Q.; Zhang, H.; Zhang, B.J.; Zheng, Y. The identification of organic additives in traditional lime mortar. J. Cult. Herit. 2014, 15, 144–150. [Google Scholar] [CrossRef]
- Rosato, L.; Stefanidou, M.; Milazzo, G.; Fernandez, F.; Livreri, P.; Muratore, N.; Terranova, L.M. Study and evaluation of nano-structured cellulose fibers as additive for restoration of historical mortars and plasters. Mater. Today Proc. 2017, 4, 6954–6965. [Google Scholar] [CrossRef]
- Thomoglou, A.K.; Voutetaki, M.E.; Fantidis, J.G.; Chalioris, C.E. Novel Natural Bee Brick with a Low Energy Footprint for “Green” Masonry Walls: Mechanical Properties. Eng. Proc. 2024, 60, 9. [Google Scholar] [CrossRef]
- Nalon, G.H.; Ribeiro, J.C.L.; Pedroti, L.G.; da Silva, R.M.; de Araújo, E.N.D.; de Lima, G.E.S. Smart laying mortars for masonry structures: Effects of lime/cement ratio and carbon nanomaterials content on self-sensing behavior. Cem. Concr. Compos. 2024, 145, 105351. [Google Scholar] [CrossRef]
- Diaz, J.; Ševcík, R.; Mácová, P.; Menéndez, B.; Frankeová, D.; Slížková, Z. Impact of nanosilica on lime restoration mortars properties. J. Cult. Herit. 2022, 55, 210–222. [Google Scholar] [CrossRef]
- Slížková, Z.; Drdácký, M. Effects of Various Chemical Agents on Mechanical Characteristics of Weak Lime Mortar. In Historic Mortars; Hughes, J., Válek, J., Groot, C., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Santarelli, M.L.; Sbardella, F.; Zuena, M.; Tirillò, J.; Sarasini, F. Basalt fiber reinforced natural hydraulic lime mortars: A potential bio-based material for restoration. Mat.Des. 2014, 63, 398–406. [Google Scholar] [CrossRef]
- Di Bella, G.; Fiore, V.; Galtieri, G.; Borsellino, C.; Valenza, A. Effects of natural fibers reinforcement in lime plasters (kenaf and sisal vs polypropylene). Constr. Build. Mater. 2014, 58, 159–165. [Google Scholar] [CrossRef]
- Apostolopoulou, M.; Asteris, P.G.; Armaghani, D.J.; Douvika, M.G.; Lourenço, P.B.; Cavaleri, L.; Bakolas, A.; Moropoulou, A. Mapping and Holistic Design of Natural Hydraulic Lime Mortars. Cem. Concr. Res. 2020, 136, 106167. [Google Scholar] [CrossRef]
- Kesikidou, F.; Stefanidou, M. Natural fiber-reinforced mortars. JBE 2019, 25, 100786. [Google Scholar] [CrossRef]
- Stefanidou, M.; Kamperidou, V.; Konstantinidis, A.; Koltsou, P.; Papadopoulos, S. Use of Posidonia oceanica fibres in lime mortars. Constr. Build. Mater. 2021, 298, 123881. [Google Scholar] [CrossRef]
- Tsampali, E.; Vitta, I.; Stefanidou, M. Effect of hemp fibers and crystalline admixtures on the properties and self-healing efficiency of lime and clay-based mortars. J. Build. Eng. 2024, 86, 108963. [Google Scholar]
- Hassanisaadi, M.; Barani, M.; Rahdar, A.; Heidary, M.; Thysiadou, A.; Kyzas, G.Z. Role of agrochemical-based nanomaterials in plants: Biotic and abiotic stress with germination improvement of seeds. Plant Growth Regul. 2022, 97, 375–418. [Google Scholar] [CrossRef]
- Fernandez, F.; Germinario, S.; Basile, R.; Montagno, R.; Kapetanaki, K.; Gobakis, K.; Maravelaki, P.N. Development of eco-friendly and self-cleaning lime-pozzolan plasters for bio-construction and cultural heritage. Buildings 2020, 10, 172. [Google Scholar] [CrossRef]
Authors + Year | Type of Mortar | Type of Addition | Properties | Results |
---|---|---|---|---|
Tsampali et al., 2024 [24] | Lime, clay-based | Untreated and hydrothermally treated hemp fibers and crystaline admixtures | Physicochemical strength, self-healing | Enhanced the mechanical strength and reduced the mortars’ shrinkage. For clay mortars, an increase of 24% for untreated fibers, while for the hydrothermal process, fibers exhibited an increase (43%) |
Drougkas et al., 2023 [12] | Conductive micro and nanofillers | Graphite (G), carbon nanotubes (CNT) and carbon microfibres (CMF) | Electro-mechanical properties (piezoresistivity) | Significant strength recovery and self-healing potential in lime-pozzolan mortars with hemp fibers |
Nalon et al., 2023 [16] | Lime/cement | Carbon black nanoparticles (CBN) contents (0%, 3%, 6%, 9% by weight of binders) | Electro-mechanical properties (self- sensing, electrical conductivity) | Reduction of electrical resistivity of dry masonry mortars by more than 4 orders of magnitude with the addition of CBN contents > 6%. Self-sensing response in masonry mortars containing 6% or 9% of CBN |
Diaz et al., 2022 [17] | Lime | Silica (SiO2) nanoparticles | Physical-mechanical and mineralogical properties, mineralogical compositions | Improvement of mechanical properties up to 4 wt.% |
Dimou et al., 2022 [6] | Lime/cement | Graphene oxide (GO), reduced graphene oxide (rGO) and carboxylated graphene (GCOOH) | Electro-mechanical properties (self-sensing, electrical conductivity) | The highest (+33%) increase of the compressive strength is noted for the rGO-reinforced paste |
Stefanidou et al., 2022 [23] | Lime | Substitution of natural pozzolan by perlite by-products | Physico-mechanical properties | Reduction of the W/B ratio around (15–30%). Reduction of porosity, absorption and capillary absorption (up to 75%). Enhanced 90d mechanical characteristics and Dynamic Modulus of elasticity |
Dimou et al., 2020 [7] | Natural hydraulic lime | Silica (SiO2) nanoparticles | Electro-mechanical properties (self-sensing, electrical conductivity) | The addition of MWCNTsCOOH at 0.15 wt.% led to a 56% increase in flexural strength. Improvement of compressive strength (20%) while the flexural strength remained almost constant with rGO. The electrical resistance drops in both cases (~15%) |
Fernandez et al., 2020 [26] | Lime-Pozzolan Plasters | Lime–metakaolin and hydraulic lime–metakaolin with the addition of nano-TiO2 and perlite | Mechanical performance and durability | Decreased mechaniclal properties but enhanced the durability and energy |
Kesikidou and Stefanidou, 2019 [22] | Lime/cement | Natural fibers jute, coconut and kelp were used as additives in 1.5% by mortar volume | Mechanical, physical and microstructure properties | Jute and kelp, reduce the compressive strength of cement mortars (15%), but increase it in lime mortars (250%). Coconut fibers, work better with cement but they do not favor lime |
Slížková et al., 2019 [18] | Lime | Calcium hydroxide (lime water) or barium hydroxide (barium water) | Mechanical properties (compression and surface cohesion) | Barium water treatment significantly increased mainly the tensile strength of the tested lime mortar. Improved surface cohesion |
Rosato et al., 2017 [14] | Lime | Bio-fibrils are nano-structured cellulose fibers (nano-fibrils) | Physico-mechanical properties | Mechanical tests showed a decrease in flexural and compressive strength as the percentage of nano-fibrils increased |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pringopoulos, T.A.; Thomoglou, A.K.; Fantidis, J.G.; Thysiadou, A.A.; Metaxa, Z.S. Advanced Lime Mortars for Historical Architectural Structures. Eng. Proc. 2024, 70, 58. https://doi.org/10.3390/engproc2024070058
Pringopoulos TA, Thomoglou AK, Fantidis JG, Thysiadou AA, Metaxa ZS. Advanced Lime Mortars for Historical Architectural Structures. Engineering Proceedings. 2024; 70(1):58. https://doi.org/10.3390/engproc2024070058
Chicago/Turabian StylePringopoulos, Theodoros A., Athanasia K. Thomoglou, Jacob G. Fantidis, Anna A. Thysiadou, and Zoi S. Metaxa. 2024. "Advanced Lime Mortars for Historical Architectural Structures" Engineering Proceedings 70, no. 1: 58. https://doi.org/10.3390/engproc2024070058
APA StylePringopoulos, T. A., Thomoglou, A. K., Fantidis, J. G., Thysiadou, A. A., & Metaxa, Z. S. (2024). Advanced Lime Mortars for Historical Architectural Structures. Engineering Proceedings, 70(1), 58. https://doi.org/10.3390/engproc2024070058