An Innovative Winding Number Method for Nonlinear Dynamical System Characterization †
Abstract
:1. Introduction
2. Methodology
2.1. Sensitivity of the Winding Number
2.2. Standard Deviation of the Winding Number
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, K.; Chatzinikolaidis, I.; Li, Z. Bayesian optimization for whole-body control of high-degree-of-freedom robots through reduction of dimensionality. IEEE Robot. Autom. Lett. 2019, 4, 2268–2275. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, Y.; Park, H. Bioinspired high-degrees of freedom soft robotic glove for restoring versatile and comfortable manipulation. Soft Robot. 2022, 9, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Tian, Y.; Wang, F.; Zhang, D.; Liu, X.; Shirinzadeh, B. Design and control of a 6-degree-of-freedom precision positioning system. Robot. Comput. Integr. Manuf. 2017, 44, 77–96. [Google Scholar] [CrossRef]
- Mauzé, B.; Dahmouche, R.; Laurent, G.J.; André, A.N.; Rougeot, P.; Sandoz, P.; Clévy, C. Nanometer precision with a planar parallel continuum robot. IEEE Robot. Autom. Lett. 2020, 5, 3806–3813. [Google Scholar] [CrossRef]
- Dubey, R.V.; Euler, J.A.; Babcock, S.M. An efficient gradient projection optimization scheme for a seven-degree-of-freedom redundant robot with spherical wrist. In Proceedings of the 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988; pp. 28–36. [Google Scholar]
- Guo, Y.; Yin, S.; Ren, Y.; Zhu, J.; Yang, S.; Ye, S. A multilevel calibration technique for an industrial robot with parallelogram mechanism. Precis. Eng. 2015, 40, 261–272. [Google Scholar] [CrossRef]
- Tai, K.; El-Sayed, A.; Shahriari, M.; Biglarbegian, M.; Mahmud, S. State of the art robotic grippers and applications. Robotics 2016, 5, 11. [Google Scholar] [CrossRef]
- Stergiou, N.; Decker, L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, T.; Stergiou, N. New perspectives in human movement variability. Ann. Biomed. Eng. 2013, 41, 1593–1594. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Iqbal, S.; Zhu, Y.; Liu, X.; Zhao, J. Applications of chaotic dynamics in robotics. Int. J. Adv. Robot. Syst. 2016, 13, 60. [Google Scholar] [CrossRef]
- Toz, M. Chaos-based Vortex Search algorithm for solving inverse kinematics problem of serial robot manipulators with offset wrist. Appl. Soft Comput. 2020, 89, 106074. [Google Scholar] [CrossRef]
- Hatze, H. The extended transentropy function as a useful quantifier of human motion variability. Med. Sci. Sports Exerc. 1995, 27, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Lissauer, J.J.; Murray, C.D. Solar system dynamics: Regular and chaotic motion. In Encyclopedia of the Solar System; Elsevier: Amsterdam, The Netherlands, 2014; pp. 55–79. [Google Scholar]
- Smith, L.A.; Ziehmann, C.; Fraedrich, K. Uncertainty dynamics and predictability in chaotic systems. Q. J. R. Meteorol. Soc. 1999, 125, 2855–2886. [Google Scholar] [CrossRef]
- Aurell, E.; Boffetta, G.; Crisanti, A. Paladin, and A. Vulpiani. Predictability in the large: An extension of the concept of Lyapunov exponent. J. Phys. A Math. Gen. 1997, 30, 1. [Google Scholar] [CrossRef]
- Chen, B.; Li, J.; Ding, R. Nonlinear local Lyapunov exponent and atmospheric predictability research. Sci. China Ser. D Earth Sci. 2006, 49, 1111–1120. [Google Scholar] [CrossRef]
- Yousefpoor, P.; Esfahani, M.S.; Nojumi, H. Looking for systematic approach to select chaos tests. Appl. Math. Comput. 2008, 198, 73–91. [Google Scholar] [CrossRef]
- Anishchenko, V.S.; Astakhov, S. Relative kolmogorov entropy of a chaotic system in the presence of noise. Int. J. Bifurc. Chaos 2008, 18, 2851–2855. [Google Scholar] [CrossRef]
- Wernecke, H.; Sándor, B.; Gros, C. How to test for partially predictable chaos. Sci. Rep. 2017, 7, 1087. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, J.C.; Sanjuán, M.A.F. Predictability of Chaotic Dynamics; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Venkatesan, A.; Lakshmanan, M. Bifurcation and chaos in the double-well Duffing–Van der Pol oscillator: Numerical and analytical studies. Phys. Rev. E 1997, 56, 6321. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, L. The application of the cell mapping method in the characteristic diagnosis of nonlinear dynamical systems. Nonlinear Dyn. 2023, 111, 18095–18112. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, L. A box-counting method for characteristic diagnosis of nonlinear dynamical systems. Int. J. Bifurc. Chaos 2023, 33, 2350139. [Google Scholar] [CrossRef]
System | Slope | Intercept |
---|---|---|
periodic | −0.4049 | −53.4658 |
quasiperiodic | −0.4709 | −0.6999 |
partially predictable chaotic | −0.4243 | −1.6218 |
strongly chaotic | −0.2461 | 1.2327 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Lu, S.; Dai, L.; Jia, N. An Innovative Winding Number Method for Nonlinear Dynamical System Characterization. Eng. Proc. 2024, 76, 87. https://doi.org/10.3390/engproc2024076087
Zhang Z, Lu S, Dai L, Jia N. An Innovative Winding Number Method for Nonlinear Dynamical System Characterization. Engineering Proceedings. 2024; 76(1):87. https://doi.org/10.3390/engproc2024076087
Chicago/Turabian StyleZhang, Zhengyuan, Shixuan Lu, Liming Dai, and Na Jia. 2024. "An Innovative Winding Number Method for Nonlinear Dynamical System Characterization" Engineering Proceedings 76, no. 1: 87. https://doi.org/10.3390/engproc2024076087
APA StyleZhang, Z., Lu, S., Dai, L., & Jia, N. (2024). An Innovative Winding Number Method for Nonlinear Dynamical System Characterization. Engineering Proceedings, 76(1), 87. https://doi.org/10.3390/engproc2024076087