Analysis of Energy Requirements for Massive Integration of Electric Buses in Ambato City, Ecuador †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Considerations
2.2. Data Collection
2.3. Description of the Scenario Under Study
2.4. Calculation of Force Acting on the Wheel
- force on the wheel is → Fx
- dynamic radius is → Rd
3. Analysis of Established Routes
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asamblea Nacional República del Ecuador. Proyecto de Ley de Competitividad, Segundo Suplemento Nº 475—Registro Oficial. 2024; p. 17. Available online: https://www.registroficial.gob.ec/index.php/registro-oficial-web/publicaciones/suplementos/item/19990-segundo-suplemento-al-registro-oficial-no-475 (accessed on 1 July 2024).
- Agencia Nacional de Tránsito. Resolución No. 026-DIR-2022-ANT, 2022, Amplíense los Años de Vida Útil en Vehículos del Transporte Terrestre Público y Comercial en Ecuador, Quinto Suplemento del Registro Oficial. No. 236, Quito, Ecuador. Available online: https://www.edicioneslegales-informacionadicional.com/webmaster/directorio/SIE-%20TRANSCOMERC-23-01.pdf (accessed on 21 February 2023).
- Ministerio de Energía y Minas. Balance Energético Nacional 2023; Ministerio de Energía y Minas: Quito, Ecuador, 2024. Available online: https://www.recursosyenergia.gob.ec/5900-2/ (accessed on 2 September 2024).
- Li, Z.; Zhang, Y. Public recharging infrastructure location strategy for promoting electric vehicles: A bi-level programming approach. J. Clean. Prod. 2018, 172, 2720–2734. [Google Scholar] [CrossRef]
- Wyatt, D.W.; Li, H.; Tate, J.E. The impact of road grade on carbon dioxide (CO2) emission of a passenger vehicle in real-world driving. Transp. Res. Part D 2014, 32, 160–170. [Google Scholar] [CrossRef]
- CANFACC Camara Nacional de Fabricantes de Carrocerías. Carroceros de Tungurahua preocupados por la llegada de buses eléctricos. Diario La Hora. 15 March 2019. Available online: https://www.lahora.com.ec/noticias/carroceros-de-tungurahua-preocupados-por-la-llegada-de-buses-electricos/ (accessed on 16 May 2022).
- Gobierno Autónomo Descentralizado Municipalidad de Ambato. Plan de Movilidad Urbana Sostenible. 2014, p. 511. Available online: https://www.mobiliseyourcity.net/sites/default/files/2022-06/Plan%20de%20Movilidad%20Urbana%20Sostenible%20de%20Ambato%20-%20Resumen%20ejecutivo.pdf (accessed on 2 February 2024).
- Pamula, T.; Pamula, D. Prediction of Electric Buses Energy Consumption from Trip Parameters Using Deep Learning. Energies 2022, 15, 1747. [Google Scholar] [CrossRef]
- Sennefelder, R.; Martín-Clemente, R.; González-Carvajal, R. Energy Consumption Prediction of Electric City Buses Using Multiple Linear Regression. Energies 2023, 16, 4365. [Google Scholar] [CrossRef]
- Gobierno Autónomo Descentralizado Municipalidad de Ambato. Ordenanza de Aprobación del Plan de Desarrollo y Ordenamiento Territorial 2050 y del Plan de Uso y Gestión del Suelo 2033 del Cantón de Ambato. 2021; p. 527. Available online: https://gadmatic.ambato.gob.ec/lotaip/2024/junio/articulo%2024/RESOLUCIONES%20Y%20ORDENANZAS/ORDENANZA%20QUE%20ACTUALIZA%20EL%20PLAN%20DE%20DESARROLLO%20Y%20ORDENAMIENTO%20TERRITORIAL%202050%20Y%20EL%20PLAN%20DE%20USO%20Y%20GESTION%20DE%20SUELO%202033%20DEL%20CANTON%20AMBATO.pdf (accessed on 15 December 2023).
- Puma-Benavides, D.S.; Cevallos-Carvajal, A.S.; Masaquiza-Yanzapanta, A.G.; Quinga-Morales, M.I.; Moreno-Pallares, R.R.; Usca-Gomez, H.G.; Murillo, F.A. Comparative Analysis of Energy Consumption between Electric Vehicles and Combustion Engine Vehicles in High-Altitude Urban Traffic. World Electr. Veh. J. 2024, 15, 355. [Google Scholar] [CrossRef]
- Gillespie, T.D. Fundamentals of Vehicle Dynamics; Society of Automotive Engineers: Warrendale, PA, USA, 1992; Volume 400. [Google Scholar] [CrossRef]
- Angelo, E.; Angelo, G.; Santos, P.; Andrade, D. Numerical Study of the Influence of Elements inside the Wheelhouse on the Passenger Vehicle Aerodynamic. Open J. Fluid Dyn. 2015, 5, 199–207. [Google Scholar] [CrossRef]
- Villacrés, A.S.; Fernández, E. Analysis of Energy Efficiency Electric Vehicles Using a Driving Cycle in an Established Royte in the City of Ambato. In Systems, Smart Technologies and Innovation for Society, Proceedings of CITIP’S, Volume 2; Springer: Cham, Switzerland, 2016; pp. 63–79. [Google Scholar]
- de Ambato, G.A.D.M. Contratos y Adendas con las Cooperativas de Pasajeros Para el Servicio de Transporte en la Ciudad de Ambato. 2018. Available online: https://gadmatic.ambato.gob.ec/lotaip/2023/junio/anexo%20literal%20s/ACT-002-E-2023-03-24.pdf (accessed on 25 December 2023).
Characteristic | Symbol | Value | Unit |
---|---|---|---|
Mass bus bodywork | M | 14,200 | [kg] |
Drag coefficient | Cd | 0.73 | [-] |
Gravity | g | 9.81 | [m/s2] |
Front area | A | 7.42 | [m2] |
Air density (calculated) | pa | 0.85898 | [kg/m3] |
Dynamic radius | Rd | 0.54 | [rad] |
Pressure | p | 71 | [Pa] |
Temperature | T | 15 | [°C] |
Constant air | Ra | 0.287 | [kl/kg·K] |
Slope | Ɵ | Variable | [rad] |
Parameter | Unit |
---|---|
Speed | m/s |
Altitude | [m.a.s.l.] |
Weather | [s] |
Latitude | ° |
Length | m |
Data frequency | f = 1 [s] |
Fx = Propulsive force [N] | |
Fd = Dragforce [N] | |
Cd = Coefficient of drag [-] ρa = Air density [kg/m3] A = Frontal area of the vehicle [m2] V = Velocity [m/s] | |
Rx = Rolling resistance [N] | |
fr = Rolling resistance coefficient [-] M = Mass [kg] g = gravity [m/s2] ϴ = Road slope [rad] | |
Ri = Resistance due to inertia | |
M = Mass [kg] a = Acceleration [m/s2] | |
Rg = resistance to slope [N] | |
M = Mass [kg] g = gravity [m/s2] ϴ = Road slope [rad] |
Route | Buses [No.] | Laps Bus [No.] | Laps Total Route [No.] |
---|---|---|---|
1 | 11 | 8 | 88 |
2 | 22 | 2 | 44 |
3 | 11 | 9 | 99 |
4 | 11 | 9 | 99 |
5 | 10 | 5 | 50 |
6 | 21 | 4 | 84 |
7 | 18 | 7 | 126 |
8 | 29 | 6 | 174 |
9 | 26 | 7 | 182 |
10 | 25 | 5 | 125 |
11 | 16 | 7 | 112 |
12 | 16 | 7 | 112 |
13 | 15 | 5 | 75 |
Route | Altitude Max. | Altitude Min. | Distance Lap [Km.] | Distance Bus [Km.] | Distance Total [Km.] |
---|---|---|---|---|---|
1 | 2665.90 | 2522.20 | 38.20 | 305.60 | 3361.60 |
2 | 2853.50 | 2518.70 | 25.90 | 51.80 | 1139.60 |
3 | 2892.40 | 2470.10 | 38.20 | 343.80 | 3781.80 |
4 | 2800.60 | 2468.50 | 38.20 | 343.80 | 3781.80 |
5 | 2746.00 | 2479.50 | 38.20 | 191.00 | 1910.00 |
6 | 2707.30 | 2521.40 | 40.20 | 160.80 | 3376.80 |
7 | 2920.00 | 2553.70 | 31.00 | 217.00 | 3906.00 |
8 | 2844.70 | 2470.10 | 62.00 | 372.00 | 10,788.00 |
9 | 3025.10 | 2479.70 | 62.00 | 434.00 | 11,284.00 |
10 | 2729.80 | 2522.70 | 38.20 | 191.00 | 4775.00 |
11 | 2716.40 | 2469.50 | 18.20 | 127.40 | 2038.40 |
12 | 2862.10 | 2522.30 | 28.00 | 196.00 | 3136.00 |
13 | 2745.20 | 2561.30 | 35.40 | 177.00 | 2655.00 |
Parameter | Value | Unit |
---|---|---|
Distance covered (Lap) | 493.7 | [km] |
Distance covered (Bus) | 3111.2 | [km] |
Distance covered (Route) | 55,934 | [km] |
Energy demand (Lap) | 0.67 | [GWh] |
Energy demand (Bus) | 4.23 | [GWh] |
Energy demand (Daily) | 72.14 | [GWh] |
Performance (Average) | 5.43 | [km/kWh] |
Route | Lap | Bus | Total | Performance |
---|---|---|---|---|
[kWh] | [kWh] | [kWh] | [km/kWh] | |
1 | 37.78 | 302.24 | 3324.64 | 8.09 |
2 | 37.4 | 74.8 | 1645.6 | 1.39 |
3 | 66.2 | 595.8 | 6553.8 | 5.19 |
4 | 22.56 | 203.04 | 2233.44 | 15.24 |
5 | 78.94 | 394.7 | 3947 | 2.42 |
6 | 52.66 | 210.64 | 4423.44 | 3.05 |
7 | 68.06 | 476.42 | 8575.56 | 3.19 |
8 | 56.94 | 341.64 | 9907.56 | 6.53 |
9 | 47.82 | 334.74 | 8703.24 | 9.08 |
10 | 50.72 | 253.6 | 6340 | 3.77 |
11 | 76.68 | 536.76 | 8588.16 | 1.66 |
12 | 54.32 | 380.24 | 6083.84 | 3.61 |
13 | 24.12 | 120.6 | 1809 | 7.34 |
Total | 0.67 | 4.23 | 72.14 | [GWh] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintana, P.; Yánez, A.V.; Acurio, H.; Villacrés, S.; Guayanlema, V. Analysis of Energy Requirements for Massive Integration of Electric Buses in Ambato City, Ecuador. Eng. Proc. 2024, 77, 12. https://doi.org/10.3390/engproc2024077012
Quintana P, Yánez AV, Acurio H, Villacrés S, Guayanlema V. Analysis of Energy Requirements for Massive Integration of Electric Buses in Ambato City, Ecuador. Engineering Proceedings. 2024; 77(1):12. https://doi.org/10.3390/engproc2024077012
Chicago/Turabian StyleQuintana, Paola, Angélica Vaca Yánez, Henry Acurio, Sebastián Villacrés, and Verónica Guayanlema. 2024. "Analysis of Energy Requirements for Massive Integration of Electric Buses in Ambato City, Ecuador" Engineering Proceedings 77, no. 1: 12. https://doi.org/10.3390/engproc2024077012
APA StyleQuintana, P., Yánez, A. V., Acurio, H., Villacrés, S., & Guayanlema, V. (2024). Analysis of Energy Requirements for Massive Integration of Electric Buses in Ambato City, Ecuador. Engineering Proceedings, 77(1), 12. https://doi.org/10.3390/engproc2024077012