Sliding Mode Control for Trajectory Tracking of a TurtleBot3 Mobile Robot in Obstacle Environments †
Abstract
:1. Introduction
2. Modeling
3. Controller
3.1. Sliding Mode Controller (SMC)
3.2. Obstacle Avoidance Strategy
4. Test
4.1. SMC Controller Test
4.1.1. Described Trajectory
4.1.2. Mobile Robot Velocities
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thai, T.T.N.; Le, Q.T.T.; Nguyen, C.V.; Nguyen, M.T.; Nguyen, X.T.; Phan, G.T.; Nguyen, T.S.; Pham, V.C. Autonomous Mobile Robot: Navigating and Monitoring Fire Safety at Power Substations. In Proceedings of the 2022 7th National Scientific Conference on Applying New Technology in Green Buildings (ATiGB), Da Nang, Vietnam, 11–12 November 2022; pp. 117–182. [Google Scholar] [CrossRef]
- Mohamed, J.; Sheik, A.; Venusamy, K.; Ramanathan, K. Optimization of an Intelligent and Survey Robot for Inspection and Fault Diagnosis Mechanism in the Manufacturing Sector. In Proceedings of the 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 17–19 August 2022. [Google Scholar] [CrossRef]
- Baskoro, C.H.A.H.B.; Saputra, H.M.; Mirdanies, M.; Susanti, V.; Radzi, M.F.; Aziz, R.I.A. An Autonomous Mobile Robot Platform for Medical Purpose. In Proceedings of the 2020 International Conference on Sustainable Energy Engineering and Application (ICSEEA), Tangerang, Indonesia, 18–20 November 2020; pp. 41–44. [Google Scholar] [CrossRef]
- Ramasamy, S.; Senthilkumar, N.; Karpagam, S.; Ramani, U.; Swetha, B. Embedded PID Controller Design Based Self Adjusting Robot. In Proceedings of the 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 23–25 February 2022; pp. 1531–1536. [Google Scholar] [CrossRef]
- Du, J.; Song, B.; Xu, L. Design of Fractional-order PID Controller for Path Tracking of Wheeled Mobile Robot. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 8019–8023. [Google Scholar] [CrossRef]
- Salinas, L.R.; Santiago, D.; Slawiñski, E.; Mut, V.A.; Chavez, D.; Leica, P.; Camacho, O.; Salinas, L.R.; Santiago, D.; Slawiñski, E.; et al. P+d Plus Sliding Mode Control for Bilateral Teleoperation of a Mobile Robot. Int. J. Control Autom. Syst. 2018, 16, 1927–1937. [Google Scholar] [CrossRef]
- Chen, B.; Cao, Y.; Feng, Y. Research on Trajectory Tracking Control of Non-holonomic Wheeled Robot Using Backstepping Adaptive PI Controller. In Proceedings of the 2022 7th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Tianjin, China, 1–3 July 2022; pp. 7–12. [Google Scholar] [CrossRef]
- Bai, J.; Sun, Z.; Chen, Y. Trajectory tracking control for wheeled mobile robots with input saturation. In Proceedings of the 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), Guangzhou, China, 13–15 November 2020; pp. 537–540. [Google Scholar] [CrossRef]
- Andreev, A.; Peregudova, O. On the Trajectory Tracking Control of a Wheeled Mobile Robot Based on a Dynamic Model with Slip. In Proceedings of the 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference) (STAB), Moscow, Russia, 3–5 June 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Moudoud, B.; Aissaoui, H.; Diany, M. Robust trajectory tracking control based on sliding mode of Differential Driving Four-Wheeled Mobile Robot. In Proceedings of the 2020 IEEE 6th International Conference on Optimization and Applications (ICOA), Beni Mellal, Morocco, 20–21 April 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Rassadin, Y.; Shinkaryuk, A. Modified Sliding Mode Control for Tracking Problem of Wheeled Mobile Robot. In Proceedings of the 2020 13th International Conference “Management of Large-Scale System Development” (MLSD), Moscow, Russia, 28–30 September 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Shi, W.; Xu, L.; Chen, S. Adaptive Dynamic Surface Control for Simultaneous Stabilization and Tracking of Wheeled Mobile Robot. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–30 July 2020; pp. 381–386. [Google Scholar] [CrossRef]
- Yu, H.; Ai, Z.; Sheng, N.; Liu, B. Finite-Time Trajectory Tracking Control of Mobile Robots Based on Dynamic Terminal Sliding Mode. In Proceedings of the 2022 34th Chinese Control and Decision Conference (CCDC), Hefei, China, 21–23 May 2022; pp. 4421–4426. [Google Scholar] [CrossRef]
- Chatterjee, M.; Hanif, O.; Deshpande, N.G.; Stancu, A. Trajectory Tracking of a Nonholonomic Mobile Robot using Optimal Cascade Sliding Mode Controller. In Proceedings of the 2020 3rd International Conference on Intelligent Robotic and Control Engineering (IRCE), Oxford, UK, 10–12 August 2020; pp. 81–86. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.; Hu, J. Adaptive Tracking Control of Mobile Robots based on Neural Network and Sliding Mode Methods. In Proceedings of the 2023 38th Youth Academic Annual Conference of Chinese Association of Automation (YAC), Hefei, China, 27–29 August 2023; pp. 962–967. [Google Scholar] [CrossRef]
- Pastrana, M.A.; Oliveira, L.H.; Mendes, D.A.; Silva, D.L.; Mendoza-Peñaloza, J.; Muñoz, D.M. Implementation of a PID Controller using Online Tuning Applied to a Mobile Robot Obstacle following/Avoidance. In Proceedings of the 2024 Argentine Conference on Electronics (CAE), Bahia Blanca, Argentina, 7–8 March 2024. [Google Scholar] [CrossRef]
- Adam, Y.M.; Sariff, N.B.; Algeelani, N.A. E-puck Mobile Robot Obstacles Avoidance Controller Using the Fuzzy Logic Approach. In Proceedings of the 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), Cameron Highlands, Malaysia, 15–16 June 2021; pp. 107–112. [Google Scholar] [CrossRef]
- Mashhouri, S.; Rahmati, M.; Borhani, Y.; Najafi, E. Reinforcement Learning based Sequential Controller for Mobile Robots with Obstacle Avoidance. In Proceedings of the 2022 8th International Conference on Control, Instrumentation and Automation (ICCIA), Tehran, Iran, 2–3 March 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Leica, P.; Balseca, J.; Cbascango, D. Controller Based on Null Space and Sliding Mode (NSB-SMC) for Bidirectional Teleoperation of Mobile Robots Formation in an Environment with Obstacles. In Proceedings of the 2019 IEEE Fourth Ecuador Technical Chapters Meeting (ETCM), Guayaquil, Ecuador, 13–15 November 2019. [Google Scholar] [CrossRef]
- Robots e-Manual TurtleBot3. Available online: https://emanual.robotis.com/docs/en/platform/turtlebot3/features/ (accessed on 2 September 2024).
- Leica, P.; Sagnay, B.; Poveda, F.; Camacho, O. Null-Space-Based Controller for Heterogeneous Robot Formation in Congested Environments. In Proceedings of the 2019 International Conference on Information Systems and Computer Science (INCISCOS), Quito, Ecuador, 20–22 November 2019; pp. 238–243. [Google Scholar] [CrossRef]
Technical Feature | Description |
---|---|
Size (length × width × height) | 138 mm × 178 mm × 192 mm |
Weight (+SBC + battery + sensors) | 1 kg |
Maximum velocities | 0.22 m/s, 2.84 rad/s |
Single board computers | Raspberry Pi |
Motors (2 units) | Dynamixel (XL430-W250-T) |
Laser distance sensor (LDS) | 360° LDS-1 |
Wheels (2 units) | Sprocket wheels for tire, diameter 66 mm |
Battery | Lithium polymer 11.1 V, 1800 mAh |
Operating time (battery) | 2 h:30 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riera, J.; Cachiguango, S.; Pedraza, M.; Andaluz, G.M.; Leica, P. Sliding Mode Control for Trajectory Tracking of a TurtleBot3 Mobile Robot in Obstacle Environments. Eng. Proc. 2024, 77, 7. https://doi.org/10.3390/engproc2024077007
Riera J, Cachiguango S, Pedraza M, Andaluz GM, Leica P. Sliding Mode Control for Trajectory Tracking of a TurtleBot3 Mobile Robot in Obstacle Environments. Engineering Proceedings. 2024; 77(1):7. https://doi.org/10.3390/engproc2024077007
Chicago/Turabian StyleRiera, Jacob, Sebastián Cachiguango, Michael Pedraza, Gabriela M. Andaluz, and Paulo Leica. 2024. "Sliding Mode Control for Trajectory Tracking of a TurtleBot3 Mobile Robot in Obstacle Environments" Engineering Proceedings 77, no. 1: 7. https://doi.org/10.3390/engproc2024077007
APA StyleRiera, J., Cachiguango, S., Pedraza, M., Andaluz, G. M., & Leica, P. (2024). Sliding Mode Control for Trajectory Tracking of a TurtleBot3 Mobile Robot in Obstacle Environments. Engineering Proceedings, 77(1), 7. https://doi.org/10.3390/engproc2024077007