Overview Study of the Applications of Unmanned Aerial Vehicles in the Transportation Sector †
Abstract
:1. Introduction
2. The Application of Unmanned Aerial Vehicles in Road Traffic Monitoring
3. Application of Unmanned Aerial Vehicles in Maritime Transportation
4. Forerunner Drone
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Islam, M.; Okasha, M.; Sulaeman, E. A model predictive control (MPC) approach on unit quaternion orientation based quadrotor for trajectory tracking. Int. J. Control Autom. Syst. 2019, 17, 2819–2832. [Google Scholar] [CrossRef]
- González-deSantos, L.M. News Applications of UAVs for Infrastructure Monitoring: Contact Inspection Systems. Eng. Proc. 2022, 17, 23. [Google Scholar] [CrossRef]
- Sá, R.C.; Barreto, G.A.; de Araújo, A.L.C.; Varela, A.T. Design and construction of a quadrotor-type unmanned aerial vehicle: Preliminary results. In Proceedings of the 2012 Workshop on Engineering Applications, Bogota, Colombia, 2–4 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Sivakumar, M.; Tyj, N.M. A literature survey of unmanned aerial vehicle usage for civil applications. J. Aerosp. Technol. Manag. 2021, 13, e4021. [Google Scholar] [CrossRef]
- Elmokadem, T.; Savkin, A.V. Towards fully autonomous UAVs: A survey. Sensors 2021, 21, 6223. [Google Scholar] [CrossRef]
- Ayamga, M.; Akaba, S.; Nyaaba, A.A. Multifaceted applicability of drones: A review. Technol. Forecast. Soc. Chang. 2021, 167, 120677. [Google Scholar] [CrossRef]
- Abdelmaboud, A. The internet of drones: Requirements, taxonomy, recent advances, and challenges of research trends. Sensors 2021, 21, 5718. [Google Scholar] [CrossRef]
- Moon, B.; Lee, H. Drone-image based fast crack analysis algorithm using machine learning for highway pavements. Eng. Proc. 2022, 17, 15. [Google Scholar] [CrossRef]
- Saibi, A.; Boushaki, R.; Belaidi, H. Backstepping control of drone. Eng. Proc. 2022, 14, 4. [Google Scholar] [CrossRef]
- Tahir, M.A.; Mir, I.; Islam, T.U. A review of UAV platforms for autonomous applications: Comprehensive analysis and future directions. IEEE Access 2023, 11, 52540–52554. [Google Scholar] [CrossRef]
- Telli, K.; Kraa, O.; Himeur, Y.; Ouamane, A.; Boumehraz, M.; Atalla, S.; Mansoor, W. A comprehensive review of recent research trends on unmanned aerial vehicles (uavs). Systems 2023, 11, 400. [Google Scholar] [CrossRef]
- Benallegue, A.; Mokhtari, A.; Fridman, L. High-order sliding-mode observer for a quadrotor UAV. Int. J. Robust Nonlinear Control 2008, 18, 427–440. [Google Scholar] [CrossRef]
- Bianchi, D.; Di Gennaro, S.; Di Ferdinando, M.; Acosta Lùa, C. Robust control of UAV with disturbances and uncertainty estimation. Machines 2023, 11, 352. [Google Scholar] [CrossRef]
- Loh, Y.W.; Lim, C.H.; Foo, D.C.; How, B.S.; Ng, W.P.Q.; Lam, H.L. Sustainability evaluation for pesticide application in oil palm plantation integrated with industry 4.0 technology. Chem. Eng. Trans. 2022, 94, 751–756. [Google Scholar] [CrossRef]
- Sarghini, F.; De Vivo, A. Interference analysis of a heavy lift multirotor drone flow field and transported spraying system. Chem. Eng. Trans. 2017, 58, 631–636. [Google Scholar] [CrossRef]
- Chiang, W.C.; Li, Y.; Shang, J.; Urban, T.L. Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization. Appl. Energy 2019, 242, 1164–1175. [Google Scholar] [CrossRef]
- Jońca, J.; Pawnuk, M.; Bezyk, Y.; Arsen, A.; Sówka, I. Drone-Assisted Monitoring of Atmospheric Pollution—A Comprehensive Review. Sustainability 2022, 14, 11516. [Google Scholar] [CrossRef]
- Wang, Y.; Kumar, L.; Raja, V.; AL-bonsrulah, H.A.; Kulandaiyappan, N.K.; Amirtharaj Tharmendra, A.; Al-Bahrani, M. Design and innovative integrated engineering approaches based investigation of hybrid renewable energized drone for long endurance applications. Sustainability 2022, 14, 16173. [Google Scholar] [CrossRef]
- Coifman, B.; McCord, M.; Mishalani, R.G.; Iswalt, M.; Ji, Y. Roadway traffic monitoring from an unmanned aerial vehicle. IEE Proc.-Intell. Transp. Syst. 2006, 153, 11–20. [Google Scholar] [CrossRef]
- Heintz, F.; Rudol, P.; Doherty, P. From images to traffic behavior—A UAV tracking and monitoring application. In Proceedings of the 2007 10th International Conference on Information Fusion, Quebec City, QC, Canada, 9–12 July 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Puri, A. A Survey of Unmanned Aerial Vehicles (UAV) for Traffic Surveillance; Department of Computer Science and Engineering, University of South Florida: Tampa, FL, USA, 2005; pp. 1–29. [Google Scholar]
- Niu, H.; Gonzalez-Prelcic, N.; Heath, R.W. A UAV-based traffic monitoring system-invited paper. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Khan, M.A.; Ectors, W.; Bellemans, T.; Janssens, D.; Wets, G. UAV-based traffic analysis: A universal guiding framework based on literature survey. Transp. Res. Procedia 2017, 22, 541–550. [Google Scholar] [CrossRef]
- Kanistras, K.; Martins, G.; Rutherford, M.J.; Valavanis, K.P. A survey of unmanned aerial vehicles (UAVs) for traffic monitoring. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013; IEEE: New York, NY, USA, 2013; pp. 221–234. [Google Scholar] [CrossRef]
- Salvo, G.; Caruso, L.; Scordo, A. Urban traffic analysis through an UAV. Procedia-Soc. Behav. Sci. 2014, 111, 1083–1091. [Google Scholar] [CrossRef]
- Yochim, J.A. Vulnerabilities of Unmanned Aircraft System Common Data Links to Electronic Attack. Doctoral Dissertation, US Army Command and General Staff College, Fort Leavenworth, KS, USA, 2010. [Google Scholar]
- Eisenbeiß, H. UAV Photogrammetry. Doctoral Dissertation, ETH Zurich, Zürich, Switzerland, 2009. [Google Scholar] [CrossRef]
- Barmpounakis, E.N.; Vlahogianni, E.I.; Golias, J.C. Extracting kinematic characteristics from unmanned aerial vehicles. In Proceedings of the 95th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 10–14 January 2016; No. 16v3429. [Google Scholar]
- Zheng, C.; Breton, A.; Iqbal, W.; Sadiq, I.; Elsayed, E.; Li, K. Driving-behavior monitoring using an Unmanned Aircraft System (UAS). In Digital Human Modeling, Applications in Health, Safety, Ergonomics and Risk Management: Ergonomics and Health: 6th International Conference, DHM 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, 2–7 August 2015; Proceedings, Part II 6; Springer International Publishing: Cham, Switzerland, 2015; pp. 305–312. [Google Scholar] [CrossRef]
- Sekmen, A.; Yao, F.; Malkani, M. Smart video surveillance for airborne platforms. Robotica 2009, 27, 749–761. [Google Scholar] [CrossRef]
- Gorobetz, M.; Strupka, G.; Levchenkov, A. Algorithm for optimal energy consumption of UAV in maritime anti-collision tasks. In Proceedings of the 2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 14–16 October 2015; IEEE: New York, NY, USA, 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Yang, D.; Wu, L.; Wang, S.; Jia, H.; Li, K.X. How big data enriches maritime research—A critical review of Automatic Identification System (AIS) data applications. Transp. Rev. 2019, 39, 755–773. [Google Scholar] [CrossRef]
- Nagy, M.; Bauer, P.; Hiba, A.; Gáti, A.; Drotár, I.; Lattes, B.; Kisari, Á. The Forerunner UAV Concept for the Increased Safety of First Responders. In Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems—VEHITS, Online Streaming, 28–30 April 2021. [Google Scholar] [CrossRef]
- Bauer, P.; Hiba, A.; Nagy, M.; Simonyi, E.; Kuna, G.I.; Kisari, Á.; Zarándy, Á. Encounter Risk Evaluation with a Forerunner UAV. Remote Sens. 2023, 15, 1512. [Google Scholar] [CrossRef]
- Hiba, A.; Bauer, P.; Nagy, M.; Simonyi, E.; Kisari, A.; Kuna, G.I.; Drotar, I. Software-in-the-loop simulation of the forerunner UAV system. IFAC-PapersOnLine 2022, 55, 139–144. [Google Scholar] [CrossRef]
Study | Purpose of Application | Data Processing | Flight Mode | Image Processing | Observation Altitude |
---|---|---|---|---|---|
Niu et al. [22] | Traffic monitoring, vehicle detection | Real-time | Hovering | Haar Cascade Model | Not specified |
Khan et al. [23] | Traffic monitoring, vehicle tracking | Real-time and offline | Moving and hovering | Automated image processing | Below 150 m |
Salvo et al. [25] | Urban traffic analysis | Offline | Hovering (70 m) | Tracker open-source software | 70 m, HD video |
Barmpounakis et al. [28] | Traffic analysis | Offline | Hovering | Post-processed image analysis | 70 m |
Zheng et al. [29] | Driving behavior analysis, risk assessment | Real-time | Hovering and tracking | Kalman-filter-supported tracking | Not specified |
Gorobetz et al. [31] | Enhancing maritime traffic safety | Real-time | Moving | Object detection | Not specified |
Bauer et al. [34] | Accident prevention | Real-time | Moving (20–25 km/h) | YOLOv5, object detection | Not specified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiss, B.; Ballagi, Á.; Kuczmann, M. Overview Study of the Applications of Unmanned Aerial Vehicles in the Transportation Sector. Eng. Proc. 2024, 79, 11. https://doi.org/10.3390/engproc2024079011
Kiss B, Ballagi Á, Kuczmann M. Overview Study of the Applications of Unmanned Aerial Vehicles in the Transportation Sector. Engineering Proceedings. 2024; 79(1):11. https://doi.org/10.3390/engproc2024079011
Chicago/Turabian StyleKiss, Barnabás, Áron Ballagi, and Miklós Kuczmann. 2024. "Overview Study of the Applications of Unmanned Aerial Vehicles in the Transportation Sector" Engineering Proceedings 79, no. 1: 11. https://doi.org/10.3390/engproc2024079011
APA StyleKiss, B., Ballagi, Á., & Kuczmann, M. (2024). Overview Study of the Applications of Unmanned Aerial Vehicles in the Transportation Sector. Engineering Proceedings, 79(1), 11. https://doi.org/10.3390/engproc2024079011