Digital Twins in Sustainable Supply Chains: A Comprehensive Review of Current Applications and Enablers for Successful Adoption †
Abstract
:1. Introduction
- To identify how Digital Twins enhance the capabilities of Supply Chain Management;
- To identify key enablers and success factors for successful Digital Twin adoption in supply chains.
- RQ1.
- What are the current applications of Digital Twins in Supply Chain Management that facilitate the delivery of value-added products to the market?
- RQ2.
- What are the key enablers and factors affecting the successful adoption of Digital Twins in a supply chain context?
2. Materials and Methods
3. Results
3.1. Current Applications of DT in SC
3.2. Key Enablers and Success Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stewart, G. Supply-chain Operations Reference Model (SCOR): The First Cross-industry Framework for Integrated Supply-chain Management. Logist. Inf. Manag. 1997, 10, 62–67. [Google Scholar] [CrossRef]
- Luo, Y.; Ball, P. Expanding the Scope of Manufacturing Digital Twins to Supply Chain. In Proceedings of the Advances in Transdisciplinary Engineering; IOS Press BV: Amsterdam, The Netherlands, 2023; Volume 44, pp. 120–125. [Google Scholar]
- Eisinger, B.B.; Rámháp, S. Projektalapú oktatás a Széchenyi Egyetem Menedzsment Campusán a Lean Service Creation (LSC) módszer adaptálásával. In Hazai és külföldi Modellek a Projektoktatásba; László, K., Ed.; Óbudai Egyetem Rejtő Sándor Könnyűipari és Környezetmérnöki Kar: Budapest, Hungary, 2019; pp. 384–397. [Google Scholar]
- Mittal, S.; Khan, M.A.; Romero, D.; Wuest, T. Smart Manufacturing: Characteristics, Technologies and Enabling Factors. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2019, 233, 1342–1361. [Google Scholar] [CrossRef]
- Le, T.V.; Fan, R. Digital Twins for Logistics and Supply Chain Systems: Literature Review, Conceptual Framework, Research Potential, and Practical Challenges. Comput. Ind. Eng. 2024, 187, 109768. [Google Scholar] [CrossRef]
- Srai, J.S.; Settanni, E.; Tsolakis, N.; Aulakh, K. Supply Chain Digital Twins: Opportunities and Challenges Beyond the Hype. In Proceedings of the 23rd Cambridge International Manufacturing Symposium, Cambridge, UK, 26–27 September 2019. [Google Scholar]
- Woldesilassiea, T.L.; Lemu, H.G.; Gutema, E.M. Impacts of Adopting Additive Manufacturing Process on Supply Chain: Systematic Literature Review. Logistics 2024, 8, 3. [Google Scholar] [CrossRef]
- Mammun, A.A.; Prayogo, A.; Buics, L. The Effects of the Application of Artificial Intelligence in Material Handling—A Systematic Literature Review. In Proceedings of the 7th International Scientific-Business Conference LIMEN 2021-Leadership, Innovation, Management and Economics: Integrated Politics of Research SELECTED PAPERS, Graz, Austria, 16 December 2021; pp. 139–150. [Google Scholar] [CrossRef]
- Van Der Valk, H.; Strobel, G.; Winkelmann, S.; Hunker, J.; Tomczyk, M. Supply Chains in the Era of Digital Twins—A Review. Procedia Comput. Sci. 2022, 204, 156–163. [Google Scholar] [CrossRef]
- Kauke, D.; Galka, S.; Fottner, J. Digital Twins in Order Picking Systems for Operational Decision Support. In Proceedings of the Annual Hawaii International Conference on System Sciences, Kauai, HI, USA, 5 January 2021; pp. 1655–1664. [Google Scholar] [CrossRef]
- Sharotry, A.; Jimenez, J.A.; Mediavilla, F.A.M.; Wierschem, D.; Koldenhoven, R.M.; Valles, D. Manufacturing Operator Ergonomics: A Conceptual Digital Twin Approach to Detect Biomechanical Fatigue. IEEE Access 2022, 10, 12774–12791. [Google Scholar] [CrossRef]
- What Is a Digital Twin?|IBM. Available online: https://www.ibm.com/topics/what-is-a-digital-twin (accessed on 24 March 2024).
- Ferrari, A.; Carlin, A.; Rafele, C.; Zenezini, G. A Method for Developing and Validating Simulation Models for Automated Storage and Retrieval System Digital Twins. Int. J. Adv. Manuf. Technol. 2023, 131, 5369–5382. [Google Scholar] [CrossRef]
- Félix-Cigalat, J.S.; Domingo, R. Towards a Digital Twin Warehouse through the Optimization of Internal Transport. Appl. Sci. 2023, 13, 4652. [Google Scholar] [CrossRef]
- Ferrari, A.; Zenezini, G.; Rafele, C.; Carlin, A. A Roadmap towards an Automated Warehouse Digital Twin: Current Implementations and Future Developments. IFAC-Pap. 2022, 55, 1899–1905. [Google Scholar] [CrossRef]
- Wu, S.; Xiang, W.; Li, W.; Chen, L.; Wu, C. Dynamic Scheduling and Optimization of AGV in Factory Logistics Systems Based on Digital Twin. Appl. Sci. 2023, 13, 1762. [Google Scholar] [CrossRef]
- Han, W.; Xu, J.; Sun, Z.; Liu, B.; Zhang, K.; Zhang, Z.; Mei, X. Digital Twin-Based Automated Guided Vehicle Scheduling: A Solution for Its Charging Problems. Appl. Sci. 2022, 12, 3354. [Google Scholar] [CrossRef]
- Nava, A.; Greco, L. The Impact of Last-Mile Logistics: A Case Study on the Optimisation of Commercial Fleets through the European Union. IFAC-Pap. 2023, 56, 2371–2376. [Google Scholar] [CrossRef]
- Brochado, Â.F.; Rocha, E.M.; Costa, D. A Modular IoT-Based Architecture for Logistics Service Performance Assessment and Real-Time Scheduling towards a Synchromodal Transport System. Sustainability 2024, 16, 742. [Google Scholar] [CrossRef]
- Miao, J.; Lan, S. Application of Visual Sensing Image Processing Technology under Digital Twins to the Intelligent Logistics System. Adv. Transdiscipl. Eng. 2021, 2021, 5743387. [Google Scholar] [CrossRef]
- Yan, K.; Lim, H.; Dang, L.V.; Chen, C.-H.; Chew, K.H. Cost-Optimal Pathfinding Model for Multi-Helon Logistics Network Design and Optimization: A Fourth-Party Logistics (4PL) Perspective. Adv. Transdiscipl. Eng. 2022, 28, 473–481. [Google Scholar] [CrossRef]
- Perno, M.; Hvam, L.; Haug, A. Implementation of Digital Twins in the Process Industry: A Systematic Literature Review of Enablers and Barriers. Comput. Ind. 2022, 134, 103558. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F. Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access 2018, 6, 3585–3593. [Google Scholar] [CrossRef]
- Rasheed, A.; San, O.; Kvamsdal, T. Digital Twin: Values, Challenges and Enablers. arXiv 2019, arXiv:1910.01719. [Google Scholar]
- Eisinger, B.B.; Gyurián Nagy, N.; Gyurián, N. Perception and Social Acceptance of 5G Technology for Sustainability Development. J. Clean. Prod. 2024, 467, 142964. [Google Scholar] [CrossRef]
- Ezhilarasu, C.M.; Skaf, Z.; Jennions, I.K. Understanding the Role of a Digital Twin in Integrated Vehicle Health Management (IVHM). In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; IEEE: New York, NY, USA, 2019; pp. 1484–1491. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, Y.; Burnett, M. Using Augmented Reality to Build Digital Twin for Reconfigurable Additive Manufacturing System. J. Manuf. Syst. 2020, 56, 598–604. [Google Scholar] [CrossRef]
- Minerva, R.; Lee, G.M.; Crespi, N. Digital Twin in the IoT Context: A Survey on Technical Features, Scenarios, and Architectural Models. Proc. IEEE 2020, 108, 1785–1824. [Google Scholar] [CrossRef]
- Alcácer, V.; Cruz-Machado, V. Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Eng. Sci. Technol. Int. J. 2019, 22, 899–919. [Google Scholar] [CrossRef]
- Errandonea, I.; Beltrán, S.; Arrizabalaga, S. Digital Twin for Maintenance: A Literature Review. Comput. Ind. 2020, 123, 103316. [Google Scholar] [CrossRef]
- Pfoser, S.; Treiblmaier, H.; Schauer, O. ScienceDirect Critical Success Factors of Synchromodality: Results from a Case Study and Literature Review. Transp. Res. Procedia 2016, 14, 1463–1471. [Google Scholar] [CrossRef]
- Giusti, R.; Manerba, D.; Bruno, G.; Tadei, R. Synchromodal Logistics: An Overview of Critical Success Factors, Enabling Technologies, and Open Research Issues. Transp. Res. E Logist. Transp. Rev. 2019, 129, 92–110. [Google Scholar] [CrossRef]
- Piras, G.; Agostinelli, S.; Muzi, F. Digital Twin Framework for Built Environment: A Review of Key Enablers. Energies 2024, 17, 5678. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandara, L.V.; Buics, L. Digital Twins in Sustainable Supply Chains: A Comprehensive Review of Current Applications and Enablers for Successful Adoption. Eng. Proc. 2024, 79, 64. https://doi.org/10.3390/engproc2024079064
Bandara LV, Buics L. Digital Twins in Sustainable Supply Chains: A Comprehensive Review of Current Applications and Enablers for Successful Adoption. Engineering Proceedings. 2024; 79(1):64. https://doi.org/10.3390/engproc2024079064
Chicago/Turabian StyleBandara, Lahiru Vimukthi, and László Buics. 2024. "Digital Twins in Sustainable Supply Chains: A Comprehensive Review of Current Applications and Enablers for Successful Adoption" Engineering Proceedings 79, no. 1: 64. https://doi.org/10.3390/engproc2024079064
APA StyleBandara, L. V., & Buics, L. (2024). Digital Twins in Sustainable Supply Chains: A Comprehensive Review of Current Applications and Enablers for Successful Adoption. Engineering Proceedings, 79(1), 64. https://doi.org/10.3390/engproc2024079064