A Comprehensive Framework for Transparent and Explainable AI Sensors in Healthcare †
Abstract
:1. Introduction
2. Methodology
2.1. Comprehensive Literature Review
2.1.1. Key Requirements and Challenges
2.1.2. Existing Approaches and Techniques
2.2. Empirical Analysis
2.2.1. Data Collection and Preprocessing
2.2.2. Experimental Setup and Evaluation Metrics
3. Proposed Framework
3.1. Interpretable AI Model Architecture
3.2. Interactive Human–AI Interface
3.3. Ethical and Regulatory Framework
3.4. Theoretical Framework and Research Hypotheses
3.4.1. Hypotheses for Interpretable AI Model Architecture
3.4.2. Human–AI Interface Hypotheses
3.4.3. Ethical Framework Hypotheses
3.4.4. Proposed Validation Methodology
3.4.5. Expected Challenges and Implementation Considerations
3.5. Future Validation Plan
3.5.1. Expected Impact and Implications
3.5.2. Research Contributions
4. Discussion and Future Directions
4.1. Enhancing Transparency, Explainability, and Trust
4.1.1. Interpretability of AI Sensor Outputs
4.1.2. Healthcare Professional–AI Collaboration
4.1.3. Addressing Ethical and Regulatory Concerns
4.2. Limitations and Future Research Directions
4.2.1. Scalability and Computational Complexity
4.2.2. Generalizability Across Healthcare Domains
4.2.3. Continuous Model Refinement and Adaptation
4.2.4. Integrating Multi-Modal Data Sources
4.2.5. Fostering Trust and Acceptance
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Bouderhem, R. Ethical and Regulatory Challenges for AI Biosensors in Healthcare. Proceedings 2024, 104, 37. [Google Scholar] [CrossRef]
- Smith, H. Clinical AI: Opacity, accountability, responsibility and liability. AI Soc. 2021, 36, 535–545. [Google Scholar] [CrossRef]
- Elendu, C.; Amaechi, D.C.M.; Elendu, T.C.B.; Jingwa, K.A.M.; Okoye, O.K.M.; Okah, M.M.J.; Ladele, J.A.M.; Farah, A.H.; Alimi, H.A.M. Ethical implications of AI and robotics in healthcare: A review. Medicine 2023, 102, e36671. [Google Scholar] [CrossRef]
- Hulsen, T. Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare. AI 2023, 4, 652–666. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef]
- Wadden, J.J. Defining the undefinable: The black box problem in healthcare artificial intelligence. J. Med. Ethic. 2022, 48, 764–768. [Google Scholar] [CrossRef]
- Valente, F.; Paredes, S.; Henriques, J.; Rocha, T.; de Carvalho, P.; Morais, J. Interpretability, personalization and reliability of a machine learning based clinical decision support system. Data Min. Knowl. Discov. 2022, 36, 1140–1173. [Google Scholar] [CrossRef]
- Manresa-Yee, C.; Roig-Maimó, M.F.; Ramis, S.; Mas-Sansó, R. Advances in XAI: Explanation Interfaces in Healthcare. In Handbook of Artificial Intelligence in Healthcare; Lim, C.P., Chen, Y.W., Vaidya, A., Mahorkar, C., Jain, L.C., Eds.; Intelligent Systems Reference Library; Springer: Cham, Switzerland, 2022; Volume 212. [Google Scholar] [CrossRef]
- Chaddad, A.; Peng, J.; Xu, J.; Bouridane, A. Survey of Explainable AI Techniques in Healthcare. Sensors 2023, 23, 634. [Google Scholar] [CrossRef]
- Gerlings, J.; Jensen, M.S.; Shollo, A. Explainable AI, But Explainable to Whom? An Exploratory Case Study of xAI in Healthcare. In Handbook of Artificial Intelligence in Healthcare; Lim, C.P., Chen, Y.W., Vaidya, A., Mahorkar, C., Jain, L.C., Eds.; Intelligent Systems Reference Library; Springer: Cham, Switzerland, 2022; Volume 212. [Google Scholar] [CrossRef]
- Akhtar, M.A.K.; Kumar, M.; Nayyar, A. Socially Responsible Applications of Explainable AI. In Towards Ethical and Socially Responsible Explainable AI; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2024; Volume 551. [Google Scholar] [CrossRef]
- Rajabi, E.; Kafaie, S. Knowledge Graphs and Explainable AI in Healthcare. Information 2022, 13, 459. [Google Scholar] [CrossRef]
- Van Woensel, W.; Scioscia, F.; Loseto, G.; Seneviratne, O.; Patton, E.; Abidi, S. Explanations of Symbolic Reasoning to Effect Patient Persuasion and Education. In Explainable Artificial Intelligence and Process Mining Applications for Healthcare; Juarez, J.M., Fernandez-Llatas, C., Bielza, C., Johnson, O., Kocbek, P., Larrañaga, P., Martin, N., Munoz-Gama, J., Štiglic, G., Sepulveda, M., et al., Eds.; XAI-Healthcare PM4H 2023 2023; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2024; Volume 2020. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, D.H.; Kim, M.J.; Ko, H.J.; Jeong, O.R. XAI-Based Clinical Decision Support Systems: A Systematic Review. Appl. Sci. 2024, 14, 6638. [Google Scholar] [CrossRef]
- Petersson, L.; Larsson, I.; Nygren, J.M.; Nilsen, P.; Neher, M.; Reed, J.E.; Tyskbo, D.; Svedberg, P. Challenges to implementing artificial intelligence in healthcare: A qualitative interview study with healthcare leaders in Sweden. BMC Health Serv. Res. 2022, 22, 850. [Google Scholar] [CrossRef] [PubMed]
- Kerasidou, A. Ethics of artificial intelligence in global health: Explainability, algorithmic bias and trust. J. Oral Biol. Craniofacial Res. 2021, 11, 612–614. [Google Scholar] [CrossRef] [PubMed]
- Bouderhem, R. Privacy and Regulatory Issues in Wearable Health Technology. Eng. Proc. 2023, 58, 87. [Google Scholar] [CrossRef]
- Shaban-Nejad, A.; Michalowski, M.; Brownstein, J.S.; Buckeridge, D.L. Guest Editorial Explainable AI: Towards Fairness, Accountability, Transparency and Trust in Healthcare. IEEE J. Biomed. Health Inform. 2021, 25, 2374–2375. [Google Scholar] [CrossRef]
- Bouderhem, R. AI Regulation in Healthcare: New Paradigms for A Legally Binding Treaty Under the World Health Organization. In Proceedings of the 14th International Conference on Computational Intelligence and Communication Networks (CICN), Al-Khobar, Saudi Arabia, 4–6 December 2022; pp. 277–281. [Google Scholar] [CrossRef]
- MacDonald, S.; Steven, K.; Trzaskowski, M. Interpretable AI in Healthcare: Enhancing Fairness, Safety, and Trust. In Artificial Intelligence in Medicine; Raz, M., Nguyen, T.C., Loh, E., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Ueda, D.; Kakinuma, T.; Fujita, S.; Kamagata, K.; Fushimi, Y.; Ito, R.; Matsui, Y.; Nozaki, T.; Nakaura, T.; Fujima, N.; et al. Fairness of artificial intelligence in healthcare: Review and recommendations. Jpn. J. Radiol. 2024, 42, 3–15. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef]
- Abedin, B.; Meske, C.; Junglas, I.; Rabhi, F.; Motahari-Nezhad, H.R. Designing and Managing Human-AI Interactions. Inf. Syst. Front. 2022, 24, 691–697. [Google Scholar] [CrossRef]
- Siala, H.; Wang, Y. SHIFTing artificial intelligence to be responsible in healthcare: A systematic review. Soc. Sci. Med. 2022, 296, 114782. [Google Scholar] [CrossRef]
- Park, S.; Koh, Y.; Jeon, H.; Kim, H.; Yeo, Y.; Kang, J. Enhancing the interpretability of transcription factor binding site prediction using attention mechanism. Sci. Rep. 2020, 10, 13413. [Google Scholar] [CrossRef]
- Calegari, R.; Ciatto, G.; Denti, E.; Omicini, A. Logic-Based Technologies for Intelligent Systems: State of the Art and Perspectives. Information 2020, 11, 167. [Google Scholar] [CrossRef]
- Lu, Z.; Afridi, I.; Kang, H.J.; Ruchkin, I.; Zheng, X. Surveying neuro-symbolic approaches for reliable artificial intelligence of things. J. Reliab. Intell. Environ. 2024, 10, 257–279. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Band, S.S.; Yarahmadi, A.; Hsu, C.-C.; Biyari, M.; Sookhak, M.; Ameri, R.; Dehzangi, I.; Chronopoulos, A.T.; Liang, H.-W. Application of explainable artificial intelligence in medical health: A systematic review of interpretability methods. Inform. Med. Unlocked 2023, 40, 101286. [Google Scholar] [CrossRef]
- Guleria, P.; Srinivasu, P.N.; Hassaballah, M. Diabetes prediction using Shapley additive explanations and DSaaS over machine learning classifiers: A novel healthcare paradigm. Multimed. Tools Appl. 2023, 83, 40677–40712. [Google Scholar] [CrossRef]
- Durán, J.M. Dissecting scientific explanation in AI (sXAI): A case for medicine and healthcare. Artif. Intell. 2021, 297, 103498. [Google Scholar] [CrossRef]
- Ooge, J.; Stiglic, G.; Verbert, K. Explaining artificial intelligence with visual analytics in healthcare. WIREs Data Min. Knowl. Discov. 2022, 12, e1427. [Google Scholar] [CrossRef]
- Vellido, A. The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput. Appl. 2019, 32, 18069–18083. [Google Scholar] [CrossRef]
- Nasarian, E.; Alizadehsani, R.; Acharya, U.; Tsui, K.-L. Designing interpretable ML system to enhance trust in healthcare: A systematic review to proposed responsible clinician-AI-collaboration framework. Inf. Fusion 2024, 108, 102412. [Google Scholar] [CrossRef]
- Payrovnaziri, S.N.; Chen, Z.; Rengifo-Moreno, P.; Miller, T.; Bian, J.; Chen, J.H.; Liu, X.; He, Z. Explainable artificial intelligence models using real-world electronic health record data: A systematic scoping review. J. Am. Med. Inform. Assoc. 2020, 27, 1173–1185. [Google Scholar] [CrossRef]
- Ferrara, E. Fairness and Bias in Artificial Intelligence: A Brief Survey of Sources, Impacts, and Mitigation Strategies. Sci 2024, 6, 3. [Google Scholar] [CrossRef]
- Ntoutsi, E.; Fafalios, P.; Gadiraju, U.; Iosifidis, V.; Nejdl, W.; Vidal, M.; Ruggieri, S.; Turini, F.; Papadopoulos, S.; Krasanakis, E.; et al. Bias in data-driven artificial intelligence systems—An introductory survey. WIREs Data Min. Knowl. Discov. 2020, 10, e1356. [Google Scholar] [CrossRef]
- Hort, M.; Chen, Z.; Zhang, J.M.; Harman, M.; Sarro, F. Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey. Acm J. Responsible Comput. 2024, 1, 1–52. [Google Scholar] [CrossRef]
- Giuffrè, M.; Shung, D.L. Harnessing the power of synthetic data in healthcare: Innovation, application, and privacy. npj Digit. Med. 2023, 6, 186. [Google Scholar] [CrossRef]
- Ali, A.; Pasha, M.F.; Ali, J.; Fang, O.H.; Masud, M.; Jurcut, A.D.; Alzain, M.A. Deep Learning Based Homomorphic Secure Search-Able Encryption for Keyword Search in Blockchain Healthcare System: A Novel Approach to Cryptography. Sensors 2022, 22, 528. [Google Scholar] [CrossRef]
- Rahman, A.; Hossain, S.; Muhammad, G.; Kundu, D.; Debnath, T.; Rahman, M.; Khan, S.I.; Tiwari, P.; Band, S.S. Federated learning-based AI approaches in smart healthcare: Concepts, taxonomies, challenges and open issues. Clust. Comput. 2023, 26, 2271–2311. [Google Scholar] [CrossRef]
- Falco, G.; Shneiderman, B.; Badger, J.; Carrier, R.; Dahbura, A.; Danks, D.; Eling, M.; Goodloe, A.; Gupta, J.; Hart, C.; et al. Governing AI safety through independent audits. Nat. Mach. Intell. 2021, 3, 566–571. [Google Scholar] [CrossRef]
- Oniani, D.; Hilsman, J.; Peng, Y.; Poropatich, R.K.; Pamplin, J.C.; Legault, G.L.; Wang, Y. Adopting and expanding ethical principles for generative artificial intelligence from military to healthcare. npj Digit. Med. 2023, 6, 225. [Google Scholar] [CrossRef]
- Srinivasu, P.N.; Sandhya, N.; Jhaveri, R.H.; Raut, R. From Blackbox to Explainable AI in Healthcare: Existing Tools and Case Studies. Mob. Inf. Syst. 2022, 2022, 167821. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, B.; Zhang, L.; Ke, X.; Ding, H. Neural, symbolic and neural-symbolic reasoning on knowledge graphs. AI Open 2021, 2, 14–35. [Google Scholar] [CrossRef]
- Kierner, S.; Kucharski, J.; Kierner, Z. Taxonomy of hybrid architectures involving rule-based reasoning and machine learning in clinical decision systems: A scoping review. J. Biomed. Inform. 2023, 144, 104428. [Google Scholar] [CrossRef] [PubMed]
- Moor, M.; Banerjee, O.; Abad, Z.S.H.; Krumholz, H.M.; Leskovec, J.; Topol, E.J.; Rajpurkar, P. Foundation models for generalist medical artificial intelligence. Nat. 2023, 616, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Nazar, M.; Alam, M.M.; Yafi, E.; Su'Ud, M.M. A Systematic Review of Human–Computer Interaction and Explainable Artificial Intelligence in Healthcare With Artificial Intelligence Techniques. IEEE Access 2021, 9, 153316–153348. [Google Scholar] [CrossRef]
- Asan, O.; Bayrak, A.E.; Choudhury, A. Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians. J. Med. Internet Res. 2020, 22, e15154. [Google Scholar] [CrossRef]
- Kiyasseh, D.; Laca, J.; Haque, T.F.; Miles, B.J.; Wagner, C.; Donoho, D.A.; Anandkumar, A.; Hung, A.J. A multi-institutional study using artificial intelligence to provide reliable and fair feedback to surgeons. Commun. Med. 2023, 3, 42. [Google Scholar] [CrossRef]
- Nazer, L.H.; Zatarah, R.; Waldrip, S.; Ke, J.X.C.; Moukheiber, M.; Khanna, A.K.; Hicklen, R.S.; Moukheiber, L.; Moukheiber, D.; Ma, H.; et al. Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS Digit. Health 2023, 2, e0000278. [Google Scholar] [CrossRef]
- Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA Relevance) (OJ L 119 04.05.2016, p. 1, ELI). Available online: http://data.europa.eu/eli/reg/2016/679/oj (accessed on 25 November 2024).
- Regulation (EU) 2023/2854 of the European Parliament and of the Council of 13 December 2023 on Harmonised Rules on Fair Access to and Use of Data and Amending Regulation (EU) 2017/2394 and Directive (EU) 2020/1828 (Data Act) (Text with EEA Relevance), PE/49/2023/REV/1, OJ L, 2023/2854, 22.12.2023, ELI. Available online: http://data.europa.eu/eli/reg/2023/2854/oj (accessed on 25 November 2024).
- Edemekong, P.; Annamaraju, P.; Haydel, M.J. Health Insurance Portability and Accountability Act; Updated 12 February 2024; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK500019/ (accessed on 25 November 2024).
- Williamson, S.M.; Prybutok, V. Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Appl. Sci. 2024, 14, 675. [Google Scholar] [CrossRef]
- Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 Laying down Harmonised Rules on Artificial Intelligence and AMENDING REGULATIONS (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828 (Artificial Intelligence Act) (Text with EEA Relevance), PE/24/2024/REV/1, OJ L, 2024/1689, 12.7.2024, ELI. Available online: http://data.europa.eu/eli/reg/2024/1689/oj (accessed on 25 November 2024).
- Raji, I.D.; Smart, A.; White, R.N.; Mitchell, M.; Gebru, T.; Hutchinson, B.; Smith-Loud, J.; Theron, D.; Barnes, P. Closing the AI accountability gap: Defining an end-to-end framework for internal algorithmic auditing. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* ‘20), Barcelona, Spain, 27–30 January 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 33–44. [Google Scholar] [CrossRef]
- Secinaro, S.; Calandra, D.; Secinaro, A.; Muthurangu, V.; Biancone, P. The role of artificial intelligence in healthcare: A structured literature review. BMC Med. Inform. Decis. Mak. 2021, 21, 125. [Google Scholar] [CrossRef]
- Bouderhem, R. Blockchain Technology in Healthcare: A Possible Disruption Under the Scope of Privacy. Available online: https://sciforum.net/manuscripts/16305/manuscript.pdf (accessed on 25 November 2024).
- Ali, A.; Ali, H.; Saeed, A.; Khan, A.A.; Tin, T.T.; Assam, M.; Ghadi, Y.Y.; Mohamed, H.G. Blockchain-Powered Healthcare Systems: Enhancing Scalability and Security with Hybrid Deep Learning. Sensors 2023, 23, 7740. [Google Scholar] [CrossRef]
- Reddy, S.; Fox, J.; Purohit, M.P. Artificial intelligence-enabled healthcare delivery. J. R. Soc. Med. 2018, 112, 22–28. [Google Scholar] [CrossRef]
- Pezoulas, V.C.; Kourou, K.D.; Kalatzis, F.; Exarchos, T.P.; Venetsanopoulou, A.; Zampeli, E.; Gandolfo, S.; Skopouli, F.; De Vita, S.; Tzioufas, A.G.; et al. Medical data quality assessment: On the development of an automated framework for medical data curation. Comput. Biol. Med. 2019, 107, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Hoc Group on Application of AI Technologies. Artificial Intelligence in Healthcare: Directions of Standardization. In Handbook of Artificial Intelligence in Healthcare; Lim, C.P., Chen, Y.W., Vaidya, A., Mahorkar, C., Jain, L.C., Eds.; Intelligent Systems Reference Library; Springer: Cham, Switzerland, 2022; Volume 212. [Google Scholar] [CrossRef]
- Esmaeilzadeh, P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artif. Intell. Med. 2024, 151, 102861. [Google Scholar] [CrossRef] [PubMed]
- Formosa, P.; Rogers, W.; Griep, Y.; Bankins, S.; Richards, D. Medical AI and human dignity: Contrasting perceptions of human and artificially intelligent (AI) decision making in diagnostic and medical resource allocation contexts. Comput. Hum. Behav. 2022, 133, 107296. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Jiang, N.; Yetisen, A.K. Wearable artificial intelligence biosensor networks. Biosens. Bioelectron. 2022, 219, 114825. [Google Scholar] [CrossRef]
- Pateraki, M.; Fysarakis, K.; Sakkalis, V.; Spanoudakis, G.; Varlamis, I.; Maniadakis, M.; Lourakis, M.; Ioannidis, S.; Cummins, N.; Schuller, B.; et al. Chapter 2—Biosensors and Internet of Things in smart healthcare applications: Challenges and opportunities. In Advances in Ubiquitous Sensing Applications for Healthcare, Wearable and Implantable Medical Devices; Nilanjan, D., Amira, S.A., Simon, J.F., Chintan, B., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 7, pp. 25–53. ISBN 9780128153697. [Google Scholar] [CrossRef]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef]
- Rawas, S. AI: The future of humanity. Discov. Artif. Intell. 2024, 4, 25. [Google Scholar] [CrossRef]
- Kiseleva, A.; Kotzinos, D.; De Hert, P. Transparency of AI in Healthcare as a Multilayered System of Accountabilities: Between Legal Requirements and Technical Limitations. Front. Artif. Intell. 2022, 5, 879603. [Google Scholar] [CrossRef]
- Ahmed, M.; Zubair, S. Explainable Artificial Intelligence in Sustainable Smart Healthcare. In Explainable Artificial Intelligence for Cyber Security; Ahmed, M., Islam, S.R., Anwar, A., Moustafa, N., Pathan, A.-S.K., Eds.; Studies in Computational Intelligence; Springer: Cham, Switzerland, 2022; Volume 1025. [Google Scholar] [CrossRef]
- Chen, E.; Prakash, S.; Reddi, V.J.; Kim, D.; Rajpurkar, P. A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring. Nat. Biomed. Eng. 2023, 1–10. [Google Scholar] [CrossRef]
- Chen, R.J.; Wang, J.J.; Williamson, D.F.K.; Chen, T.Y.; Lipkova, J.; Lu, M.Y.; Sahai, S.; Mahmood, F. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat. Biomed. Eng. 2023, 7, 719–742. [Google Scholar] [CrossRef]
- Aminizadeh, S.; Heidari, A.; Dehghan, M.; Toumaj, S.; Rezaei, M.; Navimipour, N.J.; Stroppa, F.; Unal, M. Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service. Artif. Intell. Med. 2024, 149, 102779. [Google Scholar] [CrossRef]
- Koutsouleris, N.; Hauser, T.U.; Skvortsova, V.; De Choudhury, M. From promise to practice: Towards the realisation of AI-informed mental health care. Lancet Digit. Health 2022, 4, e829–e840. [Google Scholar] [CrossRef] [PubMed]
- Bouderhem, R. Shaping the future of AI in healthcare through ethics and governance. Humanit. Soc. Sci. Commun. 2024, 11, 416. [Google Scholar] [CrossRef]
- Huang, S.-C.; Pareek, A.; Seyyedi, S.; Banerjee, I.; Lungren, M.P. Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines. NPJ Digit. Med. 2020, 3, 136. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.D. Application and Challenges of the Technology Acceptance Model in Elderly Healthcare: Insights from ChatGPT. Technologies 2024, 12, 68. [Google Scholar] [CrossRef]
Key Elements to Be Incorporated: |
---|
1. Attention mechanisms |
2. Symbolic reasoning |
3. Rule-based systems |
4. Human-understandable explanations |
Key Aspects of the Interface: |
---|
1. Explanation visualization |
2. Interactive querying |
3. Collaborative workflow integration |
4. User feedback and model refinement |
Key Issues: |
---|
1. Bias mitigation, discrimination and fairness |
2. Privacy and data protection |
3. Accountability and auditing |
4. Ethical guidelines and oversight |
5. Transparency |
6. Explainability |
7. Performance |
8. Data quality and accuracy |
9. Cost-effectiveness and affordability |
10. Errors and misdiagnosis |
11. Access to health and technology for all |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouderhem, R. A Comprehensive Framework for Transparent and Explainable AI Sensors in Healthcare. Eng. Proc. 2024, 82, 49. https://doi.org/10.3390/ecsa-11-20524
Bouderhem R. A Comprehensive Framework for Transparent and Explainable AI Sensors in Healthcare. Engineering Proceedings. 2024; 82(1):49. https://doi.org/10.3390/ecsa-11-20524
Chicago/Turabian StyleBouderhem, Rabaï. 2024. "A Comprehensive Framework for Transparent and Explainable AI Sensors in Healthcare" Engineering Proceedings 82, no. 1: 49. https://doi.org/10.3390/ecsa-11-20524
APA StyleBouderhem, R. (2024). A Comprehensive Framework for Transparent and Explainable AI Sensors in Healthcare. Engineering Proceedings, 82(1), 49. https://doi.org/10.3390/ecsa-11-20524