The Evaluation of the Seismic Performance of Unsymmetric-Plan Tall Buildings Using Modal Spectral Time History and Multi-Mode Pushover Analysis †
Abstract
:1. Introduction
2. Irregularity
3. Modeling in Tall Building
4. Method of Analysis
4.1. Modal Spectral (MS)
4.2. Linear Time History (LTH)
4.3. Multimodal Pushover (MPA)
5. Result and Discussion
5.1. Modal Participation Mass Factor
5.2. Lateral Displacement
5.3. Story Drift
5.4. Base Shear
5.5. Ooverturning Moment
5.6. Result MPA
6. Conclusions
- The modal analysis demonstrated that irregular structures in plan present a structural behavior independent of the percentage of irregularity.
- Type L structures evaluated in their first two vibration modes change their behavior from translational to torsional when they present an irregularity greater than 57%. Type I and O structures present translational behavior.
- Type L structures present greater displacement and story drifts than regular structures, varying this value by 114%.
- The maximum lateral displacements and mezzanine drifts for Type I and O structures decrease as the irregularity in the plan is critical by a percentage of less than 10%.
- The values of the mezzanine shear force and overturning moment for the irregular structures Type L, I, and O decrease as the irregularity in plan increases compared to the regular structure.
- The results of the MPA for irregular Type L structures demonstrated that the lateral stiffness of the structures decreases as the irregularity in plan is critical, increasing the possibility of the formation of plastic mechanisms in the structural elements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haque, M.N.; Zisan, M.B.; Kibria, M.G.; Dey, A.K. Influence of planar irregularities on seismic responses of RC building. Asian J. Civ. Eng. 2021, 22, 995–1009. [Google Scholar] [CrossRef]
- Wakchaure, M.R.; Shirish, A.; Nikam, R.D. Study of Plan Irregularity on High-Rise Structures. Int. J. Innov. Res. Dev. 2012, 1, 269–281. [Google Scholar]
- Perez, L.A.; Doz, G. Estudio de la influencia de las irregularidades en planta en la respuesta sísmica de una estructura de concreto armado. Int. J. Nat. Disasters Accid. Civ. Infrastruct. 2018, 18, 1–2. [Google Scholar]
- Tavera, H.; Bernal Esquia, Y.I.; Salas, H. El Sismo de Pisco del 15 de Agosto, 2007 (7.9Mw) Departamento de Ica—Perú (Informe Preliminar); Repositorio Geofísico Nacional (IGP): Lima, Peru, 2007. [Google Scholar]
- Instituto Nacional de Defensa Civil (INDECI). Evaluación del Impacto Socioeconómico y Ambiental del Sismo Ocurrido el 15 de Agosto de 2007: Datos 2008; Instituto Nacional de Defensa Civil: Lima, Peru, 2011; pp. 1–181. [Google Scholar]
- Tena, A. Irregularidad estructural y su efecto en la respuesta sísmica de edificios. In Proceedings of the V Congreso Iberoamericano de Ingeniería Civil, Mérida, Venezuela, 16–19 November 2010. [Google Scholar]
- İnan, T.; Korkmaz, K. Evaluation of structural irregularities based on architectural design considerations in Turkey. Struct. Surv. 2011, 29, 303–319. [Google Scholar] [CrossRef]
- Herrera, R.G.; Soberón, C.G. Influence of Plan Irregularity of Buildings. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. [Google Scholar]
- Fernández, L.R.; Aviles, J. Efectos de interacción Suelo-Estructura en Edificios con Planta Baja Blanda. Rev. Ing. Sísmica 2008, 79, 71–90. [Google Scholar] [CrossRef]
- Medina, C.; Medina, S. Coeficiente Irregularidad en Planta a partir del Análisis de Torsión en Estructuras Irregulares. Rev. Politécnica 2017, 39, 51–60. [Google Scholar]
- Habib, M.Z.; Alam, M.A.; Barua, S.; Islam, M.M. Effect of Plan Irregularity on RC Buildings due to BNBC-2006 Earthquake Load. Int. J. Sci. Eng. Res. 2016, 7, 761–765. [Google Scholar]
- Agarwal, P.; Shrikhande, M. Earthquake Resistant Design of Structures, 1st ed.; PHI Learning Pvt. Ltd.: Delhi, India, 2006; pp. 226–238. [Google Scholar]
- Ministerio de Vivienda, Construcción y Saneamiento. Norma E.030: Diseño Sismorresistente. Reglamento Nacional de Edificaciones; Ministerio de Vivienda, Construcción y Saneamiento: Lima, Peru, 2018. [Google Scholar]
- Mahato, O.P.; Kumar, M.A. Study on Effect of Geometry on RC Multistory Building Under Seismic Load. Int. J. Recent Technol. Eng. (IJRTE) 2019, 7, 794–798. [Google Scholar]
- Ahmed, M.M.M.; Raheem, S.E.A.; Ahmed, M.M.; Abdel Shafy, A.G. Irregularity Effects on the Seismic Performance of L-Shaped Multi-Story Buildings. J. Eng. Sci. Assiut Univ. Fac. Eng. 2016, 44, 513–516. [Google Scholar] [CrossRef]
- Sullivan, T.J.; Saborio-Romano, D.; O’Reilly, G.J.; Welch, D.P.; Landi, L. Simplified Pushover Analysis of Moment Resisting Frame Structures. J. Earthq. Eng. 2021, 25, 621–648. [Google Scholar] [CrossRef]
- “Kent” Yu, Q.-S.; Pugliesi, R.; Allen, M.; Bischoff, C. Assessment of modal pushover analysis procedure and its application to seismic evaluation of existing buildings. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. Paper No. 1104. [Google Scholar]
- Han, S.W.; Chopra, A.K. Approximate incremental dynamic analysis using the modal pushover analysis procedure. Earthq. Eng. Struct. Dynam. 2006, 35, 1853–1873. [Google Scholar] [CrossRef]
- Campbell, J.; Norda, H.; Meskouris, K. Improved methods for multimodal pushover analysis. In Proceedings of the 14th European Conference on Earthquake Engineering, Ohrid, North Macedonia, 30 August–3 September 2010; pp. 412–420. [Google Scholar]
- ASCE Standard ASCE/SEI 7-16; Minimun Design Loads for Buildings and Other Structures. Structural Engineering Institute: Reston, VA, USA, 2010.
- ASCE. Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA356; Federal Emergency Management Agency: Washington, DC, USA, November 2000.
Description | Value |
---|---|
Number of stories | 10 |
Story height | 3 m |
Slab size | 4 × 4 m |
Beam | 0.35 × 0.50 m2 |
Column | 0.60 × 0.60 m2 |
Slab thickness | 0.20 m |
Compressive strength of concrete (f’c) | 210 kg/cm2 |
Modulus of elasticity of concrete (E) | 217,370 kg/cm2 |
Concrete poisson ratio (u) | 0.15 |
Steel (fy) | 4200 kg/cm2 |
Live load- slab | 0.2 ton/m2 |
Live load- roof | 0.1 ton/m2 |
Structure | Model | % Irregularity |
---|---|---|
1st Structure | Base | 0.00% |
2nd Structure | L-1 | 14.29% |
3rd Structure | L-2 | 28.57% |
4th Structure | L-3 | 42.86% |
5th Structure | L-4 | 57.14% |
6th Structure | L-5 | 71.43% |
7th Structure | L-6 | 85.71% |
8th Structure | I-1 | 4.08% |
9th Structure | I-2 | 12.24% |
10th Structure | I-3 | 24.49% |
11th Structure | I-4 | 40.82% |
12th Structure | I-5 | 61.22% |
13th Structure | O-1 | 2.04% |
14th Structure | O-2 | 6.12% |
15th Structure | O-3 | 18.37% |
16th Structure | O-4 | 30.61% |
17th Structure | O-5 | 51.02% |
Parameter | Factor | Description |
---|---|---|
Z | 0.45 | Zone 4 |
U | 1.00 | Common use |
S | 1.00 | Very rigid soil |
R | 8.00 | Portico C.A. |
Station | Date | Magnitude | Depth | Acceleration (cm/s2) | |
---|---|---|---|---|---|
EO | NS | ||||
Parque Reserva (Lima) | 17-Oct-66 | 8.1 Mw | 24.00 km | 180.56 | 268.24 |
Zarate (Lima) | 05-Jan-74 | 6.1 mb | 91.70 km | 138.94 | 156.30 |
Parque Reserva (Lima) | 03-Oct-74 | 6.6 mb | 13.00 km | 194.21 | 180.09 |
Vizcarra Vargas (Tacna) | 23-Jun-01 | 6.9 mb | 33.00 km | 295.15 | 220.00 |
Univ. San Agustin (Arequipa) | 07-Jul-01 | 6.5 mb | 33.00 km | 123.21 | 120.52 |
Univ. San Luis Gonzaga (Ica) | 15-Aug-07 | 7.0 ML | 40.00 km | 272.82 | 333.66 |
Univ. Basadre (Tacna) | 05-May-10 | 6.5 ML | 36.00 km | 154.00 | 190.00 |
Model | Irregularity (%) | Mode | UX | UY | RZ | Observation |
---|---|---|---|---|---|---|
L-1 | 14.29 | 1 | 41.68 | 41.68 | 0.00 | Translational |
2 | 41.70 | 41.70 | 0.00 | Translational | ||
L-2 | 28.57 | 1 | 41.65 | 41.65 | 0.00 | Translational |
2 | 41.64 | 41.64 | 0.08 | Translational | ||
L-3 | 42.86 | 1 | 41.61 | 41.61 | 0.00 | Translational |
2 | 41.07 | 41.07 | 1.12 | Translational | ||
L-4 | 57.14 | 1 | 37.84 | 37.84 | 7.32 | Rotational |
2 | 41.56 | 41.56 | 0.00 | Translational | ||
L-5 | 71.43 | 1 | 28.64 | 28.64 | 26.28 | Rotational |
2 | 41.99 | 41.99 | 0.00 | Translational | ||
L-6 | 85.71 | 1 | 19.58 | 19.58 | 43.26 | Rotational |
2 | 42.12 | 42.12 | 0.00 | Translational |
Model | Irregularity (%) | Mode | UX | UY | RZ | Observation |
---|---|---|---|---|---|---|
I-1 | 4.08 | 1 | 0.00 | 83.21 | 0.00 | Translational |
2 | 83.39 | 0.00 | 0.00 | Translational | ||
I-2 | 12.24 | 1 | 0.00 | 83.14 | 0.00 | Translational |
2 | 83.35 | 0.00 | 0.00 | Translational | ||
I-3 | 24.49 | 1 | 0.00 | 82.82 | 0.00 | Translational |
2 | 83.30 | 0.00 | 0.00 | Translational | ||
I-4 | 40.82 | 1 | 0.00 | 82.63 | 0.00 | Translational |
2 | 83.18 | 0.00 | 0.00 | Translational | ||
I-5 | 61.22 | 1 | 0.00 | 83.87 | 0.00 | Translational |
2 | 85.09 | 0.00 | 0.00 | Translational |
Model | Irregularity (%) | Mode | UX | UY | RZ | Observation |
---|---|---|---|---|---|---|
O-1 | 2.04 | 1 | 4.73 | 78.66 | 0.00 | Translational |
2 | 78.66 | 4.73 | 0.00 | Translational | ||
O-2 | 6.12 | 1 | 83.23 | 0.00 | 0.00 | Translational |
2 | 0.00 | 83.40 | 0.00 | Translational | ||
O-3 | 18.37 | 1 | 2.90 | 80.27 | 0.00 | Translational |
2 | 80.27 | 2.90 | 0.00 | Translational | ||
O-4 | 30.61 | 1 | 82.89 | 0.00 | 0.00 | Translational |
2 | 0.00 | 83.16 | 0.00 | Translational | ||
O-5 | 51.02 | 1 | 5.58 | 79.09 | 0.00 | Translational |
2 | 79.09 | 5.58 | 0.00 | Translational |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, L.A.; Delgadillo, R.M. The Evaluation of the Seismic Performance of Unsymmetric-Plan Tall Buildings Using Modal Spectral Time History and Multi-Mode Pushover Analysis. Eng. Proc. 2025, 83, 6. https://doi.org/10.3390/engproc2025083006
Flores LA, Delgadillo RM. The Evaluation of the Seismic Performance of Unsymmetric-Plan Tall Buildings Using Modal Spectral Time History and Multi-Mode Pushover Analysis. Engineering Proceedings. 2025; 83(1):6. https://doi.org/10.3390/engproc2025083006
Chicago/Turabian StyleFlores, Luis A., and Rick M. Delgadillo. 2025. "The Evaluation of the Seismic Performance of Unsymmetric-Plan Tall Buildings Using Modal Spectral Time History and Multi-Mode Pushover Analysis" Engineering Proceedings 83, no. 1: 6. https://doi.org/10.3390/engproc2025083006
APA StyleFlores, L. A., & Delgadillo, R. M. (2025). The Evaluation of the Seismic Performance of Unsymmetric-Plan Tall Buildings Using Modal Spectral Time History and Multi-Mode Pushover Analysis. Engineering Proceedings, 83(1), 6. https://doi.org/10.3390/engproc2025083006