Development and Performance Analysis of Coconut Coir Waste-Based Recycle Papers for Cooling Pad Applications †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Paper Specimens
2.3. Tensile and Tear Strength Test
2.4. Testing Environment
2.5. Microstructural Analysis
3. Results and Discussion
3.1. Tensile Strength Analysis
3.2. Tear Strength Analysis
3.3. Microstructure Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tejero-González, A.; Franco-Salas, A. Optimal operation of evaporative cooling pads: A review. Renew. Sustain. Energy Rev. 2021, 151, 111632. [Google Scholar] [CrossRef]
- Tsafaras, I.; Campen, J.B.; Stanghellini, C.; de Zwart, H.F.; Voogt, W.; Scheffers, K.; Al Harbi, A.; Assaf, K. Al Intelligent greenhouse design decreases water use for evaporative cooling in arid regions. Agric. Water Manag. 2021, 250, 106807. [Google Scholar] [CrossRef]
- Kapilan, N.; Isloor, A.M.; Karinka, S. A comprehensive review on evaporative cooling systems. Results Eng. 2023, 18, 101059. [Google Scholar] [CrossRef]
- Moummi, A.; Mehdid, C.E.; Rouag, A.; Benmachiche, A.H.; Melhegueg, M.A.; Benchabane, A. Experimental performance evaluation of date palm fibers for a direct evaporative cooler operating in hot and arid climate. Case Stud. Therm. Eng. 2022, 35, 102119. [Google Scholar] [CrossRef]
- Kumar, N.; Walia, R.S.; Angra, S. Study of mechanical properties of pultruded jute-glass reinforced unsaturated polyester bio-composites with hybrid filler loading. World J. Eng. 2021, 18, 660–674. [Google Scholar] [CrossRef]
- Brose, A.; Kongoletos, J.; Glicksman, L. Coconut fiber cement panels as wall insulation and structural Diaphragm. Front. Energy Res. 2019, 7, 9. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Cai, C.; Zhou, Z.; Ling, Z.; Fang, X. Vertically aligned carbon fibers-penetrated phase change thermal interface materials with high thermal conductivity for chip heat dissipation. Appl. Therm. Eng. 2023, 230, 120807. [Google Scholar] [CrossRef]
- Venkatachalam, G.; Aravindh, S.; Mark, M.P.; Shenbaga Velu, P.; Bharathraj, K.B.; Varghese, A.K.; Subramani, V.P.; Ramakrishnan, R.; Manickam, S. Investigation of mechanical characteristics of coir fibre/hexagonal boron nitride reinforced polymer composite. Mater. Res. Express 2023, 10, 125302. [Google Scholar] [CrossRef]
- Mehra, A.K.; Saini, R.; Kumar, A. The effect of fibre contents on mechanical and moisture absorption properties of gourd sponge/coir fibre reinforced epoxy hybrid composites. Compos. Commun. 2021, 25, 100732. [Google Scholar] [CrossRef]
- Rajneesh, N.S.; Kumar, C.A.; Kumar, K.P.R.; Udayabhaskar, S. Investigation on mechanical properties of composite for different proportion of natural fibres with epoxy resin. AIP Conf. Proc. 2021, 2358, 020012. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, R.; Chandra Sharma, S. A review on fibres and fillers on improving the mechanical behaviour of fibre reinforced polymer composites. Mater. Today Proc. 2020, 46, 6482–6489. [Google Scholar] [CrossRef]
- Laknizi, A.; Ben Abdellah, A.; Faqir, M.; Essadiqi, E.; Dhimdi, S. Performance characterization of a direct evaporative cooling pad based on pottery material. Int. J. Sustain. Eng. 2021, 14, 46–56. [Google Scholar] [CrossRef]
- Darmawan, A.S.; Purboputro, P.I.; Febriantoko, B.W. The aluminum powder size’ effect on rice plant fiber reinforced composite to hardness, wear and coefficient of friction of brake lining. IOP Conf. Ser. Mater. Sci. Eng. 2020, 722, 012002. [Google Scholar] [CrossRef]
- Purboputro, P.I.; Darmawan, A.S.; Waluyo Febriantoko, B. Effect of operation conditions to rice plant fiber reinforced composite on coefficient of friction and wear rate of brake lining. IOP Conf. Ser. Mater. Sci. Eng. 2020, 851, 012025. [Google Scholar] [CrossRef]
- Sarjito; Riyadi, T.W.B. A parametric study of wind catcher model in a typical system of evaporative cooling tower using CFD. Appl. Mech. Mater. 2014, 660, 659–663. [Google Scholar] [CrossRef]
- Stelte, W.; Reddy, N.; Barsberg, S.; Sanadi, A.R. Coir from coconut processing waste as a raw material for applications beyond traditional uses. BioResources 2023, 18, 2187–2212. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Horváth, P.G.; Kóczán, Z.; Alpár, T. Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites. Sci. Rep. 2021, 11, 3618. [Google Scholar] [CrossRef]
- Oladele, I.O.; Adelani, S.O.; Makinde-Isola, B.A.; Omotosho, T.F. Coconut/coir fibers, their composites and applications. In Plant Fibers, their Composites, and Applications; Woodhead Publishing: Delhi, India, 2022; pp. 181–208. [Google Scholar] [CrossRef]
- Oladele, I.O.; Olayinka, M.O.; Adelani, S.O.; Borode, J.O. Development of coconut fiber-corn cub ash hybrid reinforced polyvinyl chloride composites for shoe sole application. J. Nat. Fibers 2022, 19, 11763–11776. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Sheikh, M.F.; Zolfagharian, A.; Bodaghi, M. Biopolymeric sustainable materials and their emerging applications. J. Environ. Chem. Eng. 2022, 10, 108159. [Google Scholar] [CrossRef]
- Sharma, A.; Rao, N.N.; Krupashankara, M.S. Development of eco-friendly and biodegradable Bio composites. Mater. Today Proc. 2018, 5, 20987–20995. [Google Scholar] [CrossRef]
- Sari, P.S.; Spatenka, P.; Jenikova, Z.; Grohens, Y.; Thomas, S. New type of thermoplastic bio composite: Nature of the interface on the ultimate properties and water absorption. RSC Adv. 2015, 5, 97536–97546. [Google Scholar] [CrossRef]
- SNI ISO 1924-2:2016; Paper and Board—Testing Methods for Tensile Properties—Part 2: Constant Rate of Elongation Method (20 mm/min) (ISO 1924-2:2008, IDT). National Standardization Agency of Indonesia: Jakarta, Indonesia, 2016.
- Adeniyi, A.G.; Onifade, D.V.; Ighalo, J.O.; Adeoye, A.S. A review of coir fiber reinforced polymer composites. Compos. Part B Eng. 2019, 176, 107305. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Suntijitto, A. Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Constr. Build. Mater. 2015, 94, 664–669. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Abir, N.; Anannya, F.R.; Nabi Khan, A.; Rahman, A.N.M.M.; Jamine, N. Coir fiber as thermal insulator and its performance as reinforcing material in biocomposite production. Heliyon 2023, 9, e15597. [Google Scholar] [CrossRef] [PubMed]
- del Angel-Monroy, M.; Escobar-Barrios, V.; Peña-Juarez, M.G.; Lugo-Uribe, L.E.; Navarrete-Damian, J.; Perez, E.; Gonzalez-Calderon, J.A. Effect of coconut fibers chemically modified with alkoxysilanes on the crystallization, thermal, and dynamic mechanical properties of poly(lactic acid) composites. Polym. Bull. 2024, 81, 843–870. [Google Scholar] [CrossRef]
- Kaliappan, S.; Natrayan, L. Revolutionizing Automotive Materials through Enhanced Mechanical Properties of Epoxy Hybrid Bio-Composites with Hemp, Kenaf, and Coconut Powder; SAE Technical Paper No. 2023-01-5185; SAE: Warrendale, PA, USA, 2024. [Google Scholar] [CrossRef]
- Pereira, R.C.S.; Felipe, V.T.A.; Avelino, F.; Mattos, A.L.A.; Mazzetto, S.E.; Lomonaco, D. From biomass to eco-friendly composites: Polyurethanes based on cashew nutshell liquid reinforced with coconut husk fiber. Biomass Convers. Biorefin. 2024, 14, 16819–16829. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anggono, A.D.; Darmawan, A.S.; Yulianto, A. Development and Performance Analysis of Coconut Coir Waste-Based Recycle Papers for Cooling Pad Applications. Eng. Proc. 2025, 84, 18. https://doi.org/10.3390/engproc2025084018
Anggono AD, Darmawan AS, Yulianto A. Development and Performance Analysis of Coconut Coir Waste-Based Recycle Papers for Cooling Pad Applications. Engineering Proceedings. 2025; 84(1):18. https://doi.org/10.3390/engproc2025084018
Chicago/Turabian StyleAnggono, Agus Dwi, Agung Setyo Darmawan, and Agus Yulianto. 2025. "Development and Performance Analysis of Coconut Coir Waste-Based Recycle Papers for Cooling Pad Applications" Engineering Proceedings 84, no. 1: 18. https://doi.org/10.3390/engproc2025084018
APA StyleAnggono, A. D., Darmawan, A. S., & Yulianto, A. (2025). Development and Performance Analysis of Coconut Coir Waste-Based Recycle Papers for Cooling Pad Applications. Engineering Proceedings, 84(1), 18. https://doi.org/10.3390/engproc2025084018