Enhancing Hydrophilicity and Efficiency of PVC-Based Nanofiber Membranes by Adding PEG, Chitosan, and Silver Nanoparticles for Water Filtration †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Water Contact Angle
3.2. Characterization of Nanofiber Morphology and Tensile Properties
3.3. Water Filtration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Homaeigohar, S.; Elbahri, M. Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials 2014, 7, 1017–1045. [Google Scholar] [CrossRef] [PubMed]
- Tlili, I.; Alkanhal, T.A. Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment. J. Water Reuse Desalin. 2019, 9, 232–247. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, Z.; Sun, X.; Chong, C. Electrospun Nanofiber-Based Membranes for Water Treatment. Polymers 2022, 14, 2004. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Hsiao, B.S. Current Advances on Nanofiber Membranes for Water Purification Applications; Springer International Publishing AG.: New York, NY, USA, 2018; pp. 25–46. [Google Scholar]
- Yang, C.C.; Yang, J.M.; Wu, C.Y. Poly(vinyl alcohol)/poly(vinyl chloride) composite polymer membranes for secondary zinc electrodes. J. Power Sources 2009, 191, 669–677. [Google Scholar] [CrossRef]
- Alarifi, I.M.; Alharbi, A.R.; Khan, M.; Khan, W.S.; Usta, A.; Asmatulu, R. Water Treatment using Electrospun PVC/PVP Nanofibers as Filter Medium. Int. J. Mater. Sci. Res. 2018, 2, 43–49. [Google Scholar] [CrossRef]
- Asmatulu, R.; Muppalla, H.; Veisi, Z.; Khan, W.S.; Asaduzzaman, A.; Nuraje, N. Study of hydrophilic electrospun nanofiber membranes for filtration of micro and nanosize suspended particles. Membranes 2013, 3, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Sosiati, H.; Ramadhan, F.; Rahman, M.B.N. Fabrication and Characterization of PVC-Based Nanofiber Membranes for Water Filtration Application. Semesta Tek. 2023, 26, 78–85. [Google Scholar] [CrossRef]
- Majumder, S.; Matin, M.A.; Sharif, A.; Arafat, M.T. Electrospinning of antibacterial cellulose acetate/polyethylene glycol fiber with in situ reduced silver particles. J. Polym. Res. 2020, 27, 27–40. [Google Scholar] [CrossRef]
- Huang, M.H.; Li, S.; Hutmacher, D.W.; Coudane, J.; Vert, M. Degradation characteristics of poly(ε-caprolactone)-based copolymers and blends. J. Appl. Polym. Sci. 2006, 102, 1681–1687. [Google Scholar] [CrossRef]
- Ko, P.T.; Lee, I.C.; Chen, M.C.; Tsai, S.W. Polymer microneedles fabricated from PCL and PCL/PEG blends for transdermal delivery of hydrophilic compounds. J. Taiwan Inst. Chem. Eng. 2015, 51, 1–8. [Google Scholar] [CrossRef]
- Arbade, G.K.; Srivastava, J.; Tripathi, V.; Lenka, N.; Patro, T.U. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. J. Biomater. Sci. Polym. Ed. 2020, 31, 1648–1670. [Google Scholar] [CrossRef] [PubMed]
- He, F.L.; Deng, X.; Zhou, Y.Q.; Zhang, T.D.; Liu, Y.L.; Ye, Y.J.; Yin, D.C. Controlled release of antibiotics from poly-ε-caprolactone/polyethylene glycol wound dressing fabricated by direct-writing melt electrospinning. Polym. Advan. Technol. 2019, 30, 425–434. [Google Scholar] [CrossRef]
- Sosiati, H.; Revarti, A.; Surya, A.; Hata, S. Preparation and Characterization of Non-Woven Nanofibrous Membranes of Chitosan and Poly(Ethylene Oxide) in A High Ethanol Concentration. J. Southwest Jiaotong Univ. 2022, 57, 168–180. [Google Scholar] [CrossRef]
- Tarus, B.; Fadel, N.; Al-Oufy, A.; El-Messiry, M. Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alex. Eng. J. 2016, 55, 2975–2984. [Google Scholar] [CrossRef]
- Han, Y.; Xu, Y.; Zhang, S.; Li, T.; Ramakrishna, S.; Liu, Y. Progress of Improving Mechanical Strength of Electrospun Nanofibrous Membranes. Macromol. Mater. Eng. 2020, 305, 2000230–2000245. [Google Scholar] [CrossRef]
- Goetz, L.A.; Naseri, N.; Nair, S.S.; Karim, Z.; Mathew, A.P. All cellulose electrospun water purification membranes nanotextured using cellulose nanocrystals. Cellulose 2018, 25, 3011–3023. [Google Scholar] [CrossRef]
- Hemmatian, T.; Seo, K.H.; Yanilmaz, M.; Kim, J. The bacterial control of poly (Lactic acid) nanofibers loaded with plant-derived monoterpenoids via emulsion electrospinning. Polymers 2021, 13, 3405. [Google Scholar] [CrossRef] [PubMed]
No. | Polymer Solution | Ratio (w/w) |
---|---|---|
1 | PVC/DMAC/PEG | 15%:85%:0% |
2 | PVC/DMAC/PEG | 14%:85%:1% |
3 | PVC/DMAC/PEG | 13%:85%:2% |
4 | PVC/DMAC/PEG | 12%:85%:3% |
Nanofiber Membranes | Water Contact Angle (degree) | Average Nanofiber Diameter (nm) | Tensile Properties | ||
---|---|---|---|---|---|
Tensile Strength (MPa) | Young Modulus (MPa) | Tensile Strain (%) | |||
PVC | 133 | 196 | 2.04 | 32.61 | 25.06 |
1PEG/PVC | 110 | - | - | - | - |
2PEG/PVC | 83 | 214 | 3.22 | 34.64 | 21.42 |
0.5CSNP/2PEG/PVC | 86.95 | 223 | 3.65 | 37.85 | 33.71 |
0.5AgNP/2PEG/PVC | 89.60 | 235 | 3.38 | 43.42 | 42.60 |
Nanofiber Membrane | Bacteria Testing (E. coli dan Colitinja, MPN/100 mL) | |||
---|---|---|---|---|
Before Filtration | After Filtration | |||
E. coli | Colitinja | E. coli | Colitinja | |
PVC | ≥1600 | 170 | - | - |
1PEG/PVC | - | - | ||
2PEG/PVC | - | - | ||
0.5CSNPs/2PEG/PVC | 350 (η = ~78%) | 70 (η = ~59%) | ||
0.5AgNPs/2PEG/PVC | 350 (η = ~78%) | < 1.8 (η = ~99%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosiati, H.; Hanafi, L.P.I.; Takiyudin, K.R.; Harimurti, S.; Yusmaniar, Y. Enhancing Hydrophilicity and Efficiency of PVC-Based Nanofiber Membranes by Adding PEG, Chitosan, and Silver Nanoparticles for Water Filtration. Eng. Proc. 2025, 84, 22. https://doi.org/10.3390/engproc2025084022
Sosiati H, Hanafi LPI, Takiyudin KR, Harimurti S, Yusmaniar Y. Enhancing Hydrophilicity and Efficiency of PVC-Based Nanofiber Membranes by Adding PEG, Chitosan, and Silver Nanoparticles for Water Filtration. Engineering Proceedings. 2025; 84(1):22. https://doi.org/10.3390/engproc2025084022
Chicago/Turabian StyleSosiati, Harini, Lambang Prabowo Iqbal Hanafi, Kasyi Ridha Takiyudin, Sabtanti Harimurti, and Yusmaniar Yusmaniar. 2025. "Enhancing Hydrophilicity and Efficiency of PVC-Based Nanofiber Membranes by Adding PEG, Chitosan, and Silver Nanoparticles for Water Filtration" Engineering Proceedings 84, no. 1: 22. https://doi.org/10.3390/engproc2025084022
APA StyleSosiati, H., Hanafi, L. P. I., Takiyudin, K. R., Harimurti, S., & Yusmaniar, Y. (2025). Enhancing Hydrophilicity and Efficiency of PVC-Based Nanofiber Membranes by Adding PEG, Chitosan, and Silver Nanoparticles for Water Filtration. Engineering Proceedings, 84(1), 22. https://doi.org/10.3390/engproc2025084022