Analysis of Thermal and Mechanical Parameters of the BFRP Bars †
Abstract
:1. Introduction
2. Materials and Specimens
3. Methods
3.1. Glass Transition Temperature
- —strain;
- —strain’s amplitude;
- —stress;
- —stress’s amplitude;
- f—frequency;
- t—time;
- —phase lag between stress and strain;
- E′—storage modulus;
- E″—loss modulus.
3.2. Tensile Strength and Elasticity at Room Temperature
3.3. Compressive Strength and Elasticity at Room Temperature
3.4. Compressive Strength at Elevated Temperatures
4. Results
5. Discussion
6. Conclusions
- The mechanical properties of the BFRP may strongly vary depending on many parameters, such as the type of matrix and fibres, and their volumetric proportions. However, there can be noted some trends that are similar to other studies, such as a significant reduction in compressive strength in reference to tensile strength (by over 60% in experiments performed by Thiyagarajan et al. [3] and about 40–50% in this study).
- Elasticity modulus values determined with the use of Digital Image Correlation for BFRP bars were significantly lower than the values for traditional steel reinforcement (about 5 times lower in tension and 6 times lower in compression).
- Low glass transition temperature (equal to 107.5 °C), at which structural changes in the material occurred, may lead to significant reduction in possible applicational areas. The same was confirmed in tests at elevated temperatures, as the retention ratio of compressive strength at about 100 °C was equal to 25%, and at 200 °C, it was 8%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burgoyne, C.; Byars, E.; Guadagnini, M.; Manfredi, G.; Neocleous, K.; Pilakoutas, K.; Taerwe, L.; Taranu, N.; Tepfers, R.; Weber, A. Technical Report: FRP (Fibre Reinforced Polymer) Reinforcement in RC Structures; Fédération Internationale du Béton (fib): Lausanne, Switzerland, 2007. [Google Scholar]
- Elgabbas, B.; Ahmed, F.; Benmokrane, E. Basalt FRP reinforcing bars for concrete structures. In Proceedings of the 4th Asia-Pacific Conference on FRP in Structures, APFIS, Melbourne, Australia, 11–13 December 2013; Volume 440, pp. 11–13. [Google Scholar]
- Thiyagarajan, P.; Pavalan, V.; Sivagamasundari, R. Mechanical characterization of basalt fibre reinforced polymer bars for reinforced concrete structures. Int. J. Appl. Eng. Res. 2018, 13, 5858–5862. [Google Scholar]
- Bank, L.C. Composites for Construction: Structural Design with FRP Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Pareek, K.; Saha, P. Basalt fiber and its composites: An overview. In Proceedings of the National Conference on Advances in Structural Technologies (CoAST-2019), Silchar, India, 1–3 February 2019. [Google Scholar]
- Naser, M.Z.; Hawileh, R.A.; Abdalla, J.A. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Eng. Struct. 2019, 198, 109542. [Google Scholar] [CrossRef]
- Lau, D.; Qiu, Q.; Zhou, A.; Chow, C.L. Long term performance and fire safety aspect of FRP composites used in building structures. Constr. Build. Mater. 2016, 126, 573–585. [Google Scholar] [CrossRef]
- Siddika, A.; Al Mamun, M.A.; Ferdous, W.; Alyousef, R. Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs—A state-of-the-art review. Eng. Fail. Anal. 2020, 111, 104480. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Inman, M.; Thorhallsson, E.R.; Azrague, K. A mechanical and environmental assessment and comparison of Basalt Fibre Reinforced Polymer (BFRP) rebar and steel rebar in concrete beams. Energy Procedia 2017, 111, 31–40. [Google Scholar] [CrossRef]
- Khorramian, K.; Sadeghian, P. Material Characterization of GFRP Bars in Compression Using a New Test Method. J. Test. Eval. 2021, 49, 20180873. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Zhang, M. Experimental study on flexural behaviour of inorganic polymer concrete beams reinforced with basalt rebar. Compos. Part B Eng. 2016, 93, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Protchenko, K.; Salha, M.; Urbański, M.; Narloch, P. Compressive Properties of BFRP and HFRP Bars. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1015, 012091. [Google Scholar] [CrossRef]
- Urbanski, M.; Lapko, A.; Garbacz, A. Investigation on concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures. Procedia Eng. 2013, 57, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Elgabbas, F.; Ahmed, E.A.; Benmokrane, B. Physical and mechanical characteristics of new basalt-FRP bars for reinforcing concrete structures. Constr. Build. Mater. 2015, 95, 623–635. [Google Scholar] [CrossRef]
- Włodarczyk, M.; Trofimczuk, D. Prediction of Ultimate Capacity of FRP Reinforced Concrete Compression Members; Innovations in Materials, Design and Structures Book of Abstracts for the 2019 fib International Symposium May 27–29; The Institute of Civil Engineering: Delhi, India, 2019; pp. 1353–1361. [Google Scholar]
- Hajiloo, H.; Green, M.F.; Gales, J. Mechanical properties of GFRP reinforcing bars at high temperatures. Constr. Build. Mater. 2018, 162, 142–154. [Google Scholar] [CrossRef]
- Rosa, I.C.; Firmo, J.P.; Correia, J.R.; Barros, J.A.O. Bond behaviour of sand coated GFRP bars to concrete at elevated temperature—Definition of bond vs. slip relations. Compos. Part B Eng. 2019, 160, 329–340. [Google Scholar] [CrossRef]
- Ashrafi, H.; Bazli, M.; Najafabadi, E.P.; Vatani Oskouei, A. The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures. Constr. Build. Mater. 2017, 157, 1001–1010. [Google Scholar] [CrossRef]
- Najafabadi, E.P.; Oskouei, A.V.; Khaneghahi, M.H.; Shoaei, P.; Ozbakkaloglu, T. The tensile performance of FRP bars embedded in concrete under elevated temperatures. Constr. Build. Mater. 2019, 211, 1138–1152. [Google Scholar] [CrossRef]
Diameter | Parameter | Specimen No. | Mean Value | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Ø10 (mounted with epoxy resin) | Tensile strength [MPa] | 1143.3 | 977.8 | 1098.1 | 1073.1 |
Modulus of elasticity [GPa] | 45.6 | 41.3 | 47.0 | 44.6 | |
Ø12 (mounted with epoxy resin) | Tensile strength [MPa] | 1121.3 | - | - | 1121.3 1 |
Modulus of elasticity [GPa] | 44.1 | 44.1 | 46.1 | 44.8 | |
Ø12 (mounted with expansive mortar) | Tensile strength [MPa] | 908.4 | 946.2 | 936.8 | 930.5 |
Modulus of elasticity [GPa] | 45.2, 44.4 | 43.4, 43.7 | 42.0, 40.9 | 43.3 2 |
Diameter | Parameter | Specimen No. | Mean Value | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Ø8 | Compressive strength [MPa] | 416.3 | 495.8 | - | 456.0 |
Modulus of elasticity [GPa] | 27.5, 35.4 | 35.8, 54.9 | - | 38.4 1 | |
Ø10 | Compressive strength [MPa] | 434.7 | 517.5 | 448.3 | 466.8 |
Modulus of elasticity [GPa] | 34.6 | 28.2 | 30.2 | 31.0 | |
Ø12 | Compressive strength [MPa] | 396.9 | 521.6 | 405.0 | 441.2 |
Modulus of elasticity [GPa] | 46.9, 50.0 | 24.5, 24.6 | 32.8, 37.0 | 35.1 1 |
Temperature | Parameter | Specimen No. | Mean Value | |||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
20 °C (reference specimens) | Compressive strength [MPa] | 497.7 | 519.5 | 528.0 | 472.2 | 504.3 |
100 °C | Compressive strength [MPa] | 87.1 | 153.3 | 120.2 | - | 120.2 |
Temperature at failure [°C] | 97 | 98 | 97 | - | 97.3 | |
200 °C | Compressive strength | 43.5 | 49.2 | 34.1 | - | 42.3 |
Temperature at failure [c] | 183 | 198 | 192 | - | 191.0 |
Reference | Diameters | Tensile Strength [MPa] | Compressive Strength [MPa] | Elasticity Modulus [GPa] |
---|---|---|---|---|
Thiyagarajan et al. [3] | 8, 10 and 12 mm | 1362.3–1585.6 | 470.2–495.3 | 48–52 (tension) |
Fan and Zhang [12] | 12 mm | 569–681 | - | - |
Protchenko et al. [13] | 8 mm | 1103.3 | - | 43.9 (tension) |
Urbanski et al. [14] | 8 mm | 1009.1–1089.4 | - | 38.34–40.72 |
Elgabbas et al. [2,15] | 7–8 mm | 1567–1680 | - | 59.5–69.0 (tension) 74.0–90.4 (flexion) |
Włodarczyk and Trofimczuk [16] | 8 and 10 mm | 1103–1153 | - | 43.9–48.2 (tension) |
This study | 8, 10 and 12 mm | 930.5–1121.3 | 441.2–466.8 | 43.3–44.6 (tension) 31.0–38.4 (compression) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wydra, M.; Dolny, P.; Sadowski, G.; Grochowska, N.; Turkowski, P.; Fangrat, J. Analysis of Thermal and Mechanical Parameters of the BFRP Bars. Mater. Proc. 2023, 13, 24. https://doi.org/10.3390/materproc2023013024
Wydra M, Dolny P, Sadowski G, Grochowska N, Turkowski P, Fangrat J. Analysis of Thermal and Mechanical Parameters of the BFRP Bars. Materials Proceedings. 2023; 13(1):24. https://doi.org/10.3390/materproc2023013024
Chicago/Turabian StyleWydra, Małgorzata, Piotr Dolny, Grzegorz Sadowski, Natalia Grochowska, Piotr Turkowski, and Jadwiga Fangrat. 2023. "Analysis of Thermal and Mechanical Parameters of the BFRP Bars" Materials Proceedings 13, no. 1: 24. https://doi.org/10.3390/materproc2023013024
APA StyleWydra, M., Dolny, P., Sadowski, G., Grochowska, N., Turkowski, P., & Fangrat, J. (2023). Analysis of Thermal and Mechanical Parameters of the BFRP Bars. Materials Proceedings, 13(1), 24. https://doi.org/10.3390/materproc2023013024