Feasibility Study of Ferromagnetic Cores Fabrication by Additive Manufacturing Process †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
References
- Krings, B.A.; Cossale, M.; Tenconi, A.; Soulard, J.; Cavagnino, A.; Boglietti, A. Magnetic Materials Used in Electrical Machines. IEEE Ind. Appl. Mag. 2017, 23, 21–28. [Google Scholar] [CrossRef]
- Boglietti, A.; Cavagnino, A.; Krings, A. New Magnetic Materials for Electrical Machines and Power Converters. IEEE Trans. Ind. Electron. 2017, 64, 2402–2404. [Google Scholar] [CrossRef]
- Cardelli, E. Advances in Magnetic Hysteresis Modeling. Handb. Magn. Mater. 2015, 24, 323–409. [Google Scholar]
- De Campos, M.F.; Teixeira, J.C.; Landgraf, F.J.G. The optimum grain size for minimizing energy losses in iron. J. Magn. Magn. Mater. 2006, 301, 94–99. [Google Scholar] [CrossRef]
- Garibaldi, M.; Ashcroft, I.; Simonelli, M.; Hague, R. Metallurgy of high-silicon steel parts produced using Selective Laser Melting. Acta Mater. 2016, 110, 207–216. [Google Scholar] [CrossRef]
- Garibaldi, M.; Ashcroft, I.; Hillier, N.; Harmon, S.A.C.; Hague, R. Relationship between laser energy input, microstructures and magnetic properties of selective laser melted Fe-6.9%wt Si soft magnets. Mater. Charact. 2018, 143, 144–151. [Google Scholar] [CrossRef]
- Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Lemke, J.N.; Simonelli, M.; Garibaldi, M.; Ashcroft, I.; Hague, R.; Vedani, M.; Wildman, R.; Tuck, C. Calorimetric study and microstructure analysis of the order-disorder phase transformation in silicon steel built by SLM. J. Alloys Compd. 2017, 722, 293–301. [Google Scholar] [CrossRef]
- Goll, D.; Schuller, D.; Martinek, G.; Kunert, T.; Schurr, J.; Sinz, C.; Schubert, T.; Bernthaler, T.; Riegel, H.; Schneider, G. Additive manufacturing of soft magnetic materials and components. Addit. Manuf. 2019, 27, 428–439. [Google Scholar] [CrossRef]
- You, A.; Be, M.A.Y.; In, I. Commercial scale production of Fe-6.5 wt. % Si sheet and its magnetic properties. J. Appl. Phys. 1988, 64, 5367. [Google Scholar]
- Tellinghuisen, J. The D′ → A′ transition in I2. J. Mol. Spectrosc. 1982, 94, 231–252. [Google Scholar] [CrossRef]
- Ros-Yanez, T.; Ruiz, D.; Barros, J.; Houbaert, Y.; Colás, R. Study of deformation and aging behaviour of iron-silicon alloys. Mater. Sci. Eng. A 2007, 447, 27–34. [Google Scholar] [CrossRef]
- Viala, B.; Degauque, J.; Fagot, M.; Baricco, M.; Ferrara, E.; Fiorillo, F. Study of the brittle behaviour of annealed Fe-6.5 wt%Si ribbons produced by planar flow casting. Mater. Sci. Eng. A 1996, 212, 62–68. [Google Scholar] [CrossRef]
- Jang, P.; Lee, B.; Choi, G. Effects of annealing on the magnetic properties of Fe-6.5%Si alloy powder cores. J. Appl. Phys. 2008, 103, 5–8. [Google Scholar] [CrossRef]
- González, F.; Houbaert, Y. A review of ordering phenomena in iron-silicon alloys. Rev. Metal. 2013, 49, 178–199. [Google Scholar] [CrossRef]
- Li, R.; Shen, Q.; Zhang, L.; Zhang, T. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling. J. Magn. Magn. Mater. 2004, 281, 135–139. [Google Scholar] [CrossRef]
- Tsuya, N.; Shimanaka, H.; Kan, T. Ribbon-form silicon-iron alloy containing around 6% silicon. IEEE Trans. Magn. 1980, 16, 728–733. [Google Scholar] [CrossRef]
- Tian, G.; Bi, X. Fabrication and magnetic properties of Fe-6.5% Si alloys by magnetron sputtering method. J. Alloys Compd. 2010, 502, 1–4. [Google Scholar] [CrossRef]
- Fenineche, N.E.; Cherigui, M.; Aourag, H.; Coddet, C. Structure and magnetic properties study of iron-based thermally sprayed alloys. Mater. Lett. 2004, 58, 1797–1801. [Google Scholar] [CrossRef]
- Di Schino, A. Manufacturing and application of stainless steels. Metals 2020, 10, 327. [Google Scholar] [CrossRef]
- Savolainen, J.; Collan, M. How Additive Manufacturing Technology Changes Business Models?—Review of Literature. Addit. Manuf. 2020, 32, 101070. [Google Scholar] [CrossRef]
- Sutton, A.T.; Kriewall, C.S.; Leu, M.C.; Newkirk, J.W.; Brown, B. Characterization of laser spatter and condensate generated during the selective laser melting of 304L stainless steel powder. Addit. Manuf. 2020, 31, 100904. [Google Scholar] [CrossRef]
- Wrobel, R.; Mecrow, B. A Comprehensive Review of Additive Manufacturing in Construction of Electrical Machines. IEEE Trans. Energy Convers. 2020, 35, 1054–1064. [Google Scholar] [CrossRef]
- Ridolfi, M.R.; Folgarait, P.; Di Schino, A. Laser operating windows prediction in selective laser-melting processing of metallic powders: Development and validation of a computational fluid dynamics-based model. Materials 2020, 13, 1424. [Google Scholar] [CrossRef] [PubMed]
- Narendra, B.D.; Sandip, P.H. Laser Fabrication and Machining of Materials, 1st ed.; Springer: Berlin, Germany, 2008. [Google Scholar]
Fe | Si | C | O | |
---|---|---|---|---|
FeSi3 | Bal. | 3.0 | 0.009 | 0.0001 |
FeSi6.5 | Bal. | 6.5 | 0.008 | 0.0001 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | |
---|---|---|---|---|---|---|---|---|---|---|
E [Jm−1] | 150 | 150 | 200 | 200 | 225 | 250 | 250 | 275 | 275 | 275 |
v [ms−1] | 0.5 | 1 | 0.835 | 0.5 | 0.75 | 0.668 | 1 | 0.5 | 0.607 | 0.942 |
P [W] | 75 | 150 | 167 | 100 | 168.8 | 167 | 250 | 137.5 | 167 | 259 |
S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | S19 | S20 | |
E [Jm−1] | 300 | 300 | 300 | 310 | 325 | 325 | 325 | 350 | 350 | 400 |
v [ms−1] | 0.557 | 0.863 | 1 | 0.7 | 0.514 | 0.797 | 1 | 0.5 | 0.74 | 0.6 |
P [W] | 167 | 259 | 300 | 217 | 167 | 259 | 325 | 175 | 259 | 240 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | |
---|---|---|---|---|---|---|---|---|---|---|
Relative density [%] | 99.936 | 99.995 | 99.995 | 99.974 | 99.996 | 99.994 | 99.997 | 99.969 | 99.991 | 99.995 |
S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | S19 | S20 | |
Relative density [%] | 99.994 | 99.995 | 99.993 | 99.993 | 99.986 | 99.995 | 99.991 | 99.986 | 99.994 | 99.985 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | |
---|---|---|---|---|---|---|---|---|---|---|
Relative density [%] | 99.968 | 99.998 | 99.998 | 99.993 | 99.998 | 99.997 | 99.995 | 99.991 | 99.996 | 99.996 |
S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | S19 | S20 | |
Relative density [%] | 99.994 | 99.996 | 99.994 | 99.993 | 99.989 | 99.996 | 99.997 | 99.983 | 99.994 | 99.981 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stornelli, G.; Folgarait, P.; Ridolfi, M.R.; Corapi, D.; Repitsch, C.; Di Pietro, O.; Di Schino, A. Feasibility Study of Ferromagnetic Cores Fabrication by Additive Manufacturing Process. Mater. Proc. 2021, 3, 28. https://doi.org/10.3390/IEC2M-09241
Stornelli G, Folgarait P, Ridolfi MR, Corapi D, Repitsch C, Di Pietro O, Di Schino A. Feasibility Study of Ferromagnetic Cores Fabrication by Additive Manufacturing Process. Materials Proceedings. 2021; 3(1):28. https://doi.org/10.3390/IEC2M-09241
Chicago/Turabian StyleStornelli, Giulia, Paolo Folgarait, Maria Rita Ridolfi, Domenico Corapi, Christian Repitsch, Orlando Di Pietro, and Andrea Di Schino. 2021. "Feasibility Study of Ferromagnetic Cores Fabrication by Additive Manufacturing Process" Materials Proceedings 3, no. 1: 28. https://doi.org/10.3390/IEC2M-09241
APA StyleStornelli, G., Folgarait, P., Ridolfi, M. R., Corapi, D., Repitsch, C., Di Pietro, O., & Di Schino, A. (2021). Feasibility Study of Ferromagnetic Cores Fabrication by Additive Manufacturing Process. Materials Proceedings, 3(1), 28. https://doi.org/10.3390/IEC2M-09241