Aqueous Adsorptive Removal of Bisphenol A Using Tripartite Magnetic Montmorillonite Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Composite
2.1.1. Nitrogen Adsorption–Desorption Measurements
2.1.2. X-ray Diffraction (XRD)
2.1.3. Fourier Transformed Infrared (FTIR)
2.1.4. Scanning Electron Microscope (SEM)
2.1.5. Thermogravimetric Analysis
2.2. Preparation of Magnetic Montmorillonite
2.3. Preparation of Doped Titanium Magnetic Montmorillonite
2.4. Preparation of β-Cyclodextrin Nano-Polymer and Composite Blending
2.5. Batch Adsorption Studies
2.6. Desorption Experiment
2.7. Preparation of Simulated Effluents
3. Results and Discussion
3.1. Magnetic Property of Modified Composite
3.2. UV-Visible Calibration Curve of Absorbance of BPA from Solution
3.3. Functional Group Characterization of the Prepared Adsorbents
3.4. Scanning Electron Microscopy
3.5. X-ray Diffraction Patterns of Studied Materials
3.6. BET Analysis
3.7. Thermogravimetric Analysis
3.8. Zeta Potential of Unmodified and Modified Montmorillonite Adsorbents
3.9. Adsorption Efficiencies of Adsorbents for BPA in Simulated Industrial Effluents
3.10. Effect of Dosage of nCDp/DT-Fe@MM
3.11. Effect of Time on Adsorption of BPA
3.12. Effect of Solution pH
3.13. Effect of Adsorbent Particle Size on BPA Adsorption
3.14. Effect of Temperature on Adsorption of BPA
3.15. Desorption Studies of BPA from Used Adsorbent
3.16. Adsorption Isotherms Analysis
3.17. Adsorption Kinetics Model Analysis
3.18. Adsorption Thermodynamics Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, T.; Damtie, M.M.; Hosseinzadeh, A.; Wei, W.; Jin, J.; Phong Vo, H.N.; Ye, J.S.; Liu, Y.; Wang, X.F.; Yu, Z.M.; et al. Bentonite-supported nano zero-valent iron composite as a green catalyst for bisphenol A degradation: Preparation, performance, and mechanism of action. J. Environ. Manag. 2020, 260, 110105. [Google Scholar] [CrossRef]
- Offiong, N.-A.O.; Inam, E.J.; Etuk, H.S.; Ebong, G.A.; Inyangudoh, A.I.; Addison, F. Trace Metal Levels and Nutrient Characteristics of Crude Oil-Contaminated Soil Amended with Biochar–Humus Sediment Slurry. Pollutants 2021, 1, 119–126. [Google Scholar] [CrossRef]
- Wang, Y.; Chi, B.; Li, M.; Wei, W.; Wang, Y.; Chen, D. Synthesis of sulfonated polystyrene sphere based magnesium silicate and its selective removal for bisphenol A. Surf. Interfaces 2019, 14, 9–14. [Google Scholar] [CrossRef]
- Tan, X.; Wan, Y.; Huang, Y.; He, C.; Zhang, Z.; He, Z.; Hu, L.; Zeng, J.; Shu, D. Three-dimensional MnO2 porous hollow microspheres for enhanced activity as ozonation catalysts in degradation of bisphenol A. J. Hazard. Mater. 2017, 321, 162–172. [Google Scholar] [CrossRef]
- Men, X.; Guo, Q.; Meng, B.; Ren, S.; Shen, B. Adsorption of bisphenol A in aqueous solution by composite bentonite with organic moity. Microporous Mesoporous Mater. 2020, 308, 110450. [Google Scholar] [CrossRef]
- López-Ramón, M.V.; Ocampo-Pérez, R.; Bautista-Toledo, M.I.; Rivera-Utrilla, J.; Moreno-Castilla, C.; Sánchez-Polo, M. Removal of bisphenols A and S by adsorption on activated carbon clothes enhanced by the presence of bacteria. Sci. Total Environ. 2019, 669, 767–776. [Google Scholar] [CrossRef]
- Offiong, N.-A.O.; Inam, E.J.; Edet, J.B. Preliminary Review of Sources, Fate, Analytical Challenges and Regulatory Status of Emerging Organic Contaminants in Aquatic Environments in Selected African Countries. Chem. Africa 2019, 2, 573–585. [Google Scholar] [CrossRef]
- Laing, L.V.; Viana, J.; Dempster, E.L.; Trznadel, M.; Trunkfield, L.A.; Uren Webster, T.M.; van Aerle, R.; Paull, G.C.; Wilson, R.J.; Mill, J.; et al. Bisphenol A causes reproductive toxicity, decreases dnmt1 transcription, and reduces global DNA methylation in breeding zebrafish (Danio rerio). Epigenetics 2016, 11, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.T. Human health risk on environmental exposure to bisphenol-A: A review. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2006, 24, 225–255. [Google Scholar] [CrossRef]
- Wu, N.C.; Seebacher, F. Effect of the plastic pollutant bisphenol A on the biology of aquatic organisms: A meta-analysis. Glob. Chang. Biol. 2020, 26, 3821–3833. [Google Scholar] [CrossRef] [PubMed]
- Miah, M.; Iqbal, Z.; Lai, E.P.C. Comparative Binding of Endocrine Disrupting Compounds and Pharmaceuticals with Polydopamine- and Polypyrrole-coated Magnetic Nanoparticles. CLEAN Soil Air Water 2015, 43, 173–181. [Google Scholar] [CrossRef]
- Acosta, R.; Nabarlatz, D.; Sánchez-Sánchez, A.; Jagiello, J.; Gadonneix, P.; Celzard, A.; Fierro, V. Adsorption of Bisphenol A on KOH-activated tyre pyrolysis char. J. Environ. Chem. Eng. 2018, 6, 823–833. [Google Scholar] [CrossRef]
- Xu, Y.; Khan, M.A.; Wang, F.; Xia, M.; Lei, W. Novel multi amine-containing Gemini surfactant modified montmorillonite as adsorbents for removal of phenols. Appl. Clay Sci. 2018, 162, 204–213. [Google Scholar] [CrossRef]
- Onaizi, S.A.; Alshabib, M. The degradation of bisphenol A by laccase: Effect of biosurfactant addition on the reaction kinetics under various conditions. Sep. Purif. Technol. 2021, 257, 117785. [Google Scholar] [CrossRef]
- Zhao, L.; Ji, Y.; Kong, D.; Lu, J.; Zhou, Q.; Yin, X. Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process. Chem. Eng. J. 2016, 303, 458–466. [Google Scholar] [CrossRef]
- Sharma, J.; Mishra, I.M.; Dionysiou, D.D.; Kumar, V. Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway. Chem. Eng. J. 2015, 276, 193–204. [Google Scholar] [CrossRef]
- Torres, R.A.; Pétrier, C.; Combet, E.; Moulet, F.; Pulgarin, C. Bisphenol A Mineralization by Integrated Ultrasound-UV-Iron (II) Treatment. Environ. Sci. Technol. 2007, 41, 297–302. [Google Scholar] [CrossRef]
- Xie, Y.; Li, P.; Zeng, Y.; Li, X.; Xiao, Y.; Wang, Y.; Zhang, Y. Thermally treated fungal manganese oxides for bisphenol A degradation using sulfate radicals. Chem. Eng. J. 2018, 335, 728–736. [Google Scholar] [CrossRef]
- Colombo, A.; Cappelletti, G.; Ardizzone, S.; Biraghi, I.; Bianchi, C.L.; Meroni, D.; Pirola, C.; Spadavecchia, F. Bisphenol A endocrine disruptor complete degradation using TiO2 photocatalysis with ozone. Environ. Chem. Lett. 2012, 10, 55–60. [Google Scholar] [CrossRef]
- Thiruvenkatachari, R.; Ouk Kwon, T.; Shik Moon, I. Application of Slurry Type Photocatalytic Oxidation-Submerged Hollow Fiber Microfiltration Hybrid System for the Degradation of Bisphenol A (BPA). Sep. Sci. Technol. 2005, 40, 2871–2888. [Google Scholar] [CrossRef]
- Xiao, K.; Liang, H.; Chen, S.; Yang, B.; Zhang, J.; Li, J. Enhanced photoelectrocatalytic degradation of bisphenol A and simultaneous production of hydrogen peroxide in saline wastewater treatment. Chemosphere 2019, 222, 141–148. [Google Scholar] [CrossRef]
- Mei, P.; Wang, H.; Guo, H.; Zhang, N.; Ji, S.; Ma, Y.; Xu, J.; Li, Y.; Alsulami, H.; Alhodaly, M.S.; et al. The enhanced photodegradation of bisphenol A by TiO2/C3N4 composites. Environ. Res. 2020, 182, 109090. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhao, X.; Zhang, H.; Yang, B.; Xiao, K.; Guo, T.; Zhang, J.; Shao, H.; Wang, Y.; Yu, G. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation. Appl. Catal. B Environ. 2018, 233, 35–45. [Google Scholar] [CrossRef]
- Alshabib, M.; Onaizi, S.A. Enzymatic Remediation of Bisphenol A from Wastewaters: Effects of Biosurfactant, Anionic, Cationic, Nonionic, and Polymeric Additives. Water Air Soil Pollut. 2020, 231, 428. [Google Scholar] [CrossRef]
- Liu, N.; Liang, G.; Dong, X.; Qi, X.; Kim, J.; Piao, Y. Stabilized magnetic enzyme aggregates on graphene oxide for high performance phenol and bisphenol A removal. Chem. Eng. J. 2016, 306, 1026–1034. [Google Scholar] [CrossRef]
- Chmayssem, A.; Taha, S.; Hauchard, D. Scaled-up electrochemical reactor with a fixed bed three-dimensional cathode for electro-Fenton process: Application to the treatment of bisphenol A. Electrochim. Acta 2017, 225, 435–442. [Google Scholar] [CrossRef]
- Zbair, M.; Ainassaari, K.; Drif, A.; Ojala, S.; Bottlinger, M.; Pirilä, M.; Keiski, R.L.; Bensitel, M.; Brahmi, R. Toward new benchmark adsorbents: Preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environ. Sci. Pollut. Res. 2018, 25, 1869–1882. [Google Scholar] [CrossRef] [PubMed]
- Skaf, D.W.; Punzi, V.L.; Rolle, J.T.; Kleinberg, K.A. Removal of micron-sized microplastic particles from simulated drinking water via alum coagulation. Chem. Eng. J. 2020, 386, 123807. [Google Scholar] [CrossRef]
- Staroń, P.; Chwastowski, J. Raphia-Microorganism Composite Biosorbent for Lead Ion Removal from Aqueous Solutions. Materials 2021, 14, 7482. [Google Scholar] [CrossRef]
- Kum, H.; Kim, M.K.; Choi, H.T. Degradation of endocrine disrupting chemicals by genetic transformants in Irpex lacteus with an inducible laccase gene of Phlebia tremellosa. Biodegradation 2009, 20, 673–678. [Google Scholar] [CrossRef]
- Sakai, K.; Yamanaka, H.; Moriyoshi, K.; Ohmoto, T.; Ohe, T. Biodegradation of Bisphenol A and Related Compounds by Sphingomonas sp. Strain BP-7 Isolated from Seawater. Biosci. Biotechnol. Biochem. 2007, 71, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Verma, B.; Balomajumder, C. Hexavalent chromium reduction from real electroplating wastewater by chemical precipitation. Bull. Chem. Soc. Ethiop. 2020, 34, 67–74. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, G.; Zhou, R.; Wang, C.; Chi, B.; Wang, Y.; Hua, C.; Qiu, J.; Jin, Y.; Wu, S. Green synthesis of reusable multifunctional γ-Fe2O3/bentonite modified by doped TiO2 hollow spherical nanocomposite for removal of BPA. Sci. Total Environ. 2020, 708, 134669. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Huang, Q.; Qi, G.; Xiong, L.; Huang, C.; Chen, X.; Li, H.; Chen, X. Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies. Chemosphere 2017, 171, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, W.; Zong, S.; Ren, X.; Liu, D. Magnetic clay as catalyst applied to organics degradation in a combined adsorption and Fenton-like process. Chem. Eng. J. 2019, 373, 140–149. [Google Scholar] [CrossRef]
- Rathnayake, S.I.; Xi, Y.; Frost, R.L.; Ayoko, G.A. Environmental applications of inorganic–organic clays for recalcitrant organic pollutants removal: Bisphenol A. J. Colloid Interface Sci. 2016, 470, 183–195. [Google Scholar] [CrossRef]
- Li, Y.; Jin, F.; Wang, C.; Chen, Y.; Wang, Q.; Zhang, W.; Wang, D. Modification of bentonite with cationic surfactant for the enhanced retention of bisphenol A from landfill leachate. Environ. Sci. Pollut. Res. 2015, 22, 8618–8628. [Google Scholar] [CrossRef] [PubMed]
- Garikoé, I.; Sorgho, B.; Yaméogo, A.; Guel, B.; Andala, D. Removal of bisphenol A by adsorption on organically modified clays from Burkina Faso. Bioremediat. J. 2021, 25, 22–47. [Google Scholar] [CrossRef]
- Tiwari, D.; Lee, S.M.; Thanhmingliana, T. Hybrid materials in the decontamination of bisphenol A from aqueous solutions. RSC Adv. 2014, 4, 43921–43930. [Google Scholar] [CrossRef]
- Sasai, R.; Sugiyama, D.; Takahashi, S.; Tong, Z.; Shichi, T.; Itoh, H.; Takagi, K. The removal and photodecomposition of n-nonylphenol using hydrophobic clay incorporated with copper-phthalocyanine in aqueous media. J. Photochem. Photobiol. A Chem. 2003, 155, 223–229. [Google Scholar] [CrossRef]
- Alani, O.A.; Ari, H.A.; Offiong, N.-A.O.; Alani, S.O.; Li, B.; Zeng, Q.; Feng, W. Catalytic Removal of Selected Textile Dyes Using Zero-Valent Copper Nanoparticles Loaded on Filter Paper-Chitosan-Titanium Oxide Heterogeneous Support. J. Polym. Environ. 2021, 29, 2825–2839. [Google Scholar] [CrossRef]
- Ari, H.A.; Alani, O.A.; Zeng, Q.; Ugya, Y.A.; Offiong, N.-A.O.; Feng, W. Enhanced UV-assisted Fenton performance of nanostructured biomimetic α-Fe2O3 on degradation of tetracycline. J. Nanostructure Chem. 2022, 12, 45–58. [Google Scholar] [CrossRef]
- Alani, O.A.; Ari, H.A.; Alani, S.O.; Offiong, N.-A.O.; Feng, W. Visible-Light-Driven Bio-Templated Magnetic Copper Oxide Composite for Heterogeneous Photo-Fenton Degradation of Tetracycline. Water 2021, 13, 1918. [Google Scholar] [CrossRef]
- Amari, A.; Mohammed Alzahrani, F.; Mohammedsaleh Katubi, K.; Salem Alsaiari, N.; Tahoon, M.A.; Ben Rebah, F. Clay-Polymer Nanocomposites: Preparations and Utilization for Pollutants Removal. Materials 2021, 14, 1365. [Google Scholar] [CrossRef]
- Unuabonah, E.I.; Taubert, A. Clay–polymer nanocomposites (CPNs): Adsorbents of the future for water treatment. Appl. Clay Sci. 2014, 99, 83–92. [Google Scholar] [CrossRef]
- Pavlidou, S.; Papaspyrides, C.D. A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 2008, 33, 1119–1198. [Google Scholar] [CrossRef]
- Sternik, D.; Galaburda, M.V.; Bogatyrov, V.M.; Oranska, O.I.; Charmas, B.; Gun’ko, V.M. Novel porous carbon/clay nanocomposites derived from kaolinite/resorcinol-formaldehyde polymer blends: Synthesis, structure and sorption properties. Appl. Surf. Sci. 2020, 525, 146361. [Google Scholar] [CrossRef]
- Okon, O.E.; Israel, A.U.; Inam, E.J.; Etim, U.J. Preparation and characterization of Fe2O3/mesoporous clay composite from Nigerian local bentonite clay. J. Mater. Environ. Sci. 2019, 10, 618–623. [Google Scholar] [CrossRef]
- Liu, C.; Wu, P.; Tran, L.; Zhu, N.; Dang, Z. Organo-montmorillonites for efficient and rapid water remediation: Sequential and simultaneous adsorption of lead and bisphenol A. Environ. Chem. 2018, 15, 286–295. [Google Scholar] [CrossRef]
- Liu, S.; Wu, P.; Chen, M.; Yu, L.; Kang, C.; Zhu, N.; Dang, Z. Amphoteric modified vermiculites as adsorbents for enhancing removal of organic pollutants: Bisphenol A and Tetrabromobisphenol A. Environ. Pollut. 2017, 228, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Middea, A.; Spinelli, L.S.; Souza Jr, F.G.; Neumann, R.; Fernandes, T.L.A.P.; Gomes, O.d.F.M. Preparation and characterization of an organo-palygorskite-Fe3O4 nanomaterial for removal of anionic dyes from wastewater. Appl. Clay Sci. 2017, 139, 45–53. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M. Adsorption Characteristics and Mechanism of Bisphenol A by Magnetic Biochar. Int. J. Environ. Res. Public Health 2020, 17, 1075. [Google Scholar] [CrossRef] [PubMed]
- Salehinia, S.; Ghoreishi, S.M.; Maya, F.; Cerdà, V. Hydrophobic magnetic montmorillonite composite material for the efficient adsorption and microextraction of bisphenol A from water samples. J. Environ. Chem. Eng. 2016, 4, 4062–4071. [Google Scholar] [CrossRef]
- Bala, P.; Samantaray, B.K.; Srivastava, S.K. Dehydration transformation in Ca-montmorillonite. Bull. Mater. Sci. 2000, 23, 61–67. [Google Scholar] [CrossRef]
- Wan, D.; Chen, Y.; Shi, Y.; Liu, Y.; Xiao, S. Effective adsorption of bisphenol A from aqueous solution over a novel mesoporous carbonized material based on spent bleaching earth. Environ. Sci. Pollut. Res. 2021, 28, 40035–40048. [Google Scholar] [CrossRef] [PubMed]
- Schaber, P.M.; Colson, J.; Higgins, S.; Thielen, D.; Anspach, B.; Brauer, J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 2004, 424, 131–142. [Google Scholar] [CrossRef]
- Batra, S.; Datta, D.; Sai Beesabathuni, N.; Kanjolia, N.; Saha, S. Adsorption of Bisphenol-A from aqueous solution using amberlite XAD-7 impregnated with aliquat 336: Batch, column, and design studies. Process Saf. Environ. Prot. 2019, 122, 232–246. [Google Scholar] [CrossRef]
- Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Shuaib, D.T.; Ajala, A.O.; Mohammed, A.K. Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: A review. Appl. Water Sci. 2020, 10, 49. [Google Scholar] [CrossRef]
- Xiang, Y.; Gao, M.; Ding, F.; Shen, T. The efficient removal of dimethyl phthalate by three organo-vermiculites with imidazolium-based gemini surfactants in aqueous media. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 580, 123726. [Google Scholar] [CrossRef]
- Mohan, N.; Vijayalakshmi, K.P.; Koga, N.; Suresh, C.H. Comparison of aromatic NH···π, OH···π, and CH···π interactions of alanine using MP2, CCSD, and DFT methods. J. Comput. Chem. 2010, 31, 2874–2882. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Ayoko, G.A.; Horváth, E.; Kurdi, R.; Kristof, J.; Frost, R.L. Structural characterisation and environmental application of organoclays for the removal of phenolic compounds. J. Colloid Interface Sci. 2013, 393, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Israel, A.U.; Okon, O.E. Removal of Zinc from Aqueous Solution by Adsorption using Coir Dust (Residue and Extract). Chem. Mater. Res. 2014, 6, 154–159. [Google Scholar]
- Awad, A.M.; Shaikh, S.M.R.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Wang, J.; Gao, M.; Shen, T.; Yu, M.; Xiang, Y.; Liu, J. Insights into the efficient adsorption of rhodamine B on tunable organo-vermiculites. J. Hazard. Mater. 2019, 366, 501–511. [Google Scholar] [CrossRef]
- Rahardjo, A.K.; Susanto, M.J.J.; Kurniawan, A.; Indraswati, N.; Ismadji, S. Modified Ponorogo bentonite for the removal of ampicillin from wastewater. J. Hazard. Mater. 2011, 190, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Sun, Z.; Park, Y.; Ayoko, G.A.; Frost, R.L. Removal of bisphenol A from wastewater by Ca-montmorillonite modified with selected surfactants. Chem. Eng. J. 2013, 234, 416–422. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Johir, M.A.H.; Sun, L.; Asadullah, M.; Belhaj, D. Sorption of hydrophobic organic contaminants on functionalized biochar: Protagonist role of π-π electron-donor-acceptor interactions and hydrogen bonds. J. Hazard. Mater. 2018, 360, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Errais, E.; Duplay, J.; Darragi, F.; M’Rabet, I.; Aubert, A.; Huber, F.; Morvan, G. Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters. Desalination 2011, 275, 74–81. [Google Scholar] [CrossRef]
Sample Name | SBET (m2/g) | Total Pore Volume (cm3/g) | BJH-Average Pore Diameter (nm) | Pore Size (nm) | Micropore Volume (cm3/g) |
---|---|---|---|---|---|
MM | 90.398 | 0.3285 | 14.30 | 6.730 | 0.002729 |
DT-Fe@MM | 210.720 | 0.1435 | 6.37 | 2.725 | 0.077269 |
nCDp/DT-Fe@MM | 288.079 | 0.1907 | 5.69 | 2.648 | 0.113633 |
Adsorbents | Langmuir | Freundlich | Flory-Huggins | Dubinin-Radushkevich | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KL | qm | b | R2 | KF | 1/n | R2 | KFH | αFH | ΔG° | R2 | qm | Ea | R2 | |
MM | 0.21 | 12.34 | 0.070 | 0.858 | 1.191 | 1.306 | 0.954 | 1.143 | 1.301 | −336.70 | 0.851 | 1.89 | 270.27 | 0.793 |
DT-Fe@MM | 0.22 | 15.55 | 0.072 | 0.892 | 1.104 | 1.332 | 0.959 | 1.236 | 1.438 | −533.76 | 0.972 | 17.62 | 222.22 | 0.847 |
nCDp/DT-Fe@MM | 0.25 | 25.44 | 0.080 | 0.916 | 1.412 | 1.273 | 0.957 | 1.770 | 1.208 | −1438.38 | 0.931 | 18.86 | 220.22 | 0.687 |
Adsorbent | Adsorption Capacity (mg/g) | Reference |
---|---|---|
MM | 12.34 | This study |
DT-Fe@MM | 15.55 | This study |
nCDp/DT-Fe@MM | 25.44 | This study |
Organo-Arizona Mont. | 151.52 | Zheng et al. [66] |
Natural Sericite | 4.816 | Tiwari et al. [39] |
Aluminium modified Sericite | 5.047 | Tiwari et al. [39] |
Natural bentonite | 4.816 | Li et al. [37] |
HTAB modified Bentonite | 10.449 | Li et al. [37] |
EGIS/CPAB modified bentonite | 119.88 | Men et al. [5] |
CST modified Bentonite | 77.36 | Cao et al. [33] |
Adsorbents | qe,exp | Pseudo-First-Order | Pseudo-Second-Order | Intra-Particle Diffusion | ||||||
---|---|---|---|---|---|---|---|---|---|---|
K1 | qe,cal | R2 | K2 | qe,cal | R2 | Kid | C | R2 | ||
MM | 21.17 | 0.012 | 2.20 | 0.239 | 2.232 | 23.095 | 0.999 | 0.722 | 14.71 | 0.628 |
DT-Fe@MM | 22.94 | 0.012 | 2.30 | 0.268 | 1.907 | 22.989 | 0.999 | 0.691 | 16.73 | 0.650 |
nCDp/DT-Fe@MM | 23.52 | 0.03 | 38.63 | 0.749 | 2.317 | 23.584 | 0.999 | 0.575 | 18.34 | 0.624 |
Adsorbents | ΔH°(KJ/mol) | ΔS°(J/(mol.K)) | ΔG°(KJ/mol) | |||
---|---|---|---|---|---|---|
303 K | 313 K | 323 K | 343 K | |||
MM | −34.48 | −1.679 | −45.923 | −50.977 | −34.346 | −35.908 |
DT-Fe@MM | −42.95 | −1.902 | −44.280 | −50.050 | −33.322 | −35.591 |
nCDp/DT-Fe@MM | −107.73 | −4.728 | −58.214 | −63.940 | −36.512 | −38.601 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okon, O.E.; Inam, E.J.; Offiong, N.-A.O.; Akpabio, U.D. Aqueous Adsorptive Removal of Bisphenol A Using Tripartite Magnetic Montmorillonite Composites. Pollutants 2022, 2, 363-387. https://doi.org/10.3390/pollutants2030025
Okon OE, Inam EJ, Offiong N-AO, Akpabio UD. Aqueous Adsorptive Removal of Bisphenol A Using Tripartite Magnetic Montmorillonite Composites. Pollutants. 2022; 2(3):363-387. https://doi.org/10.3390/pollutants2030025
Chicago/Turabian StyleOkon, Okon E., Edu J. Inam, Nnanake-Abasi O. Offiong, and Ukana D. Akpabio. 2022. "Aqueous Adsorptive Removal of Bisphenol A Using Tripartite Magnetic Montmorillonite Composites" Pollutants 2, no. 3: 363-387. https://doi.org/10.3390/pollutants2030025
APA StyleOkon, O. E., Inam, E. J., Offiong, N. -A. O., & Akpabio, U. D. (2022). Aqueous Adsorptive Removal of Bisphenol A Using Tripartite Magnetic Montmorillonite Composites. Pollutants, 2(3), 363-387. https://doi.org/10.3390/pollutants2030025