Antibiotics in the Environment: Prescribing Risks to Non-Target Organisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Species and Antibiotics Tested
2.2. Experimental Design
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nisha, A.R. Antibiotic Residues—A Global Health Hazard. Vet. World 2008, 1, 375–377. [Google Scholar] [CrossRef]
- Sivalingam, P.; Poté, J.; Prabakar, K. Environmental Prevalence of Carbapenem Resistance Enterobacteriaceae (CRE) in a Tropical Ecosystem in India: Human Health Perspectives and Future Directives. Pathogens 2019, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Review on Antimicrobial Resistance: London, UK, 2016. [Google Scholar]
- WHO. Global Antimicrobial Resistance Surveillance System (GLASS) Report. World Health Organization [Internet]; WHO: Geneva, Switzerland, 2017; Available online: https://apps.who.int/iris/bitstream/handle/10665/279656/9789241515061-eng.pdf?ua=1 (accessed on 10 January 2020).
- Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Velásquez Arias, J.A. Pharmaceutical and Personal Hygiene Products (PPcPs): A Threat Little Studied in Colombian Waters. Agri. Res. Tech. 2019, 22, 556201. [Google Scholar] [CrossRef]
- Ma, W.; Tai, L.; Qiao, Z.; Zhong, L.; Wang, Z.; Fu, K.; Chen, G. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: A case study in North China. Sci. Total Environ. 2018, 631–632, 348–357. [Google Scholar] [CrossRef]
- Ramires, P.F.; Tavella, R.A.; Escarrone, A.L.; Volcão, L.M.; Honscha, L.C.; de Lima Brum, R.; da Silva, A.B.; da Silva Júnior, F.M.R. Ecotoxicity of triclosan in soil: An approach using different species. Environ. Sci. Pollut. Res. 2021, 28, 41233–41241. [Google Scholar] [CrossRef]
- Robles-Jimenez, L.E.; Aranda-Aguirre, E.; Castelan-Ortega, O.A.; Shettino-Bermudez, B.S.; Ortiz-Salinas, R.; Miranda, M.; Li, X.; Angeles-Hernandez, J.C.; Vargas-Bello-Pérez, E.; Gonzalez-Ronquillo, M. Worldwide Traceability of Antibiotic Residues from Livestock in Wastewater and Soil: A Systematic Review. Animals 2022, 12, 60. [Google Scholar] [CrossRef]
- Albernaz-Gonçalves, R.; Olmos, G.; Hötzel, M. Exploring Farmers’ Reasons for Antibiotic Use and Misuse in Pig Farms in Brazil. Antibiotics 2021, 10, 331. [Google Scholar] [CrossRef]
- SNIS—National Sanitation Information System. Available online: http://www.snis.gov.br/painel-informacoes-saneamento-brasil/web/painel-esgotamento-sanitario (accessed on 7 September 2022).
- Vounba, P.; Arsenault, J.; Bada-Alambédji, R.; Fairbrother, J.M. Prevalence of antimicrobial resistance and potential pathogenicity, and possible spread of third generation cephalosporin resistance, in Escherichia coli isolated from healthy chicken farms in the region of Dakar, Senegal. PLoS ONE 2019, 14, e0214304. [Google Scholar] [CrossRef] [Green Version]
- Das, N.; Madhavan, J.; Selvi, A.; Das, D. An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Ahmadi, H.; Ebrahimi, A.; Ahmadi, F. Antibiotic Therapy in Dentistry. Int. J. Dent. 2021, 2021, 6667624. [Google Scholar] [CrossRef] [PubMed]
- Ono, A.; Ishikane, M.; Kusama, Y.; Tanaka, C.; Ono, S.; Tsuzuki, S.; Muraki, Y.; Yamasaki, D.; Tanabe, M.; Ohmagari, N. The first national survey of antimicrobial use among dentists in Japan from 2015 to 2017 based on the national database of health insurance claims and specific health checkups of Japan. PLoS ONE 2020, 15, e0244521. [Google Scholar] [CrossRef] [PubMed]
- Gilbertson, T.J.; Hornish, R.E.; Jaglan, P.S.; Koshy, K.T.; Nappier, J.L.; Stahl, G.L.; Cazers, A.R.; Nappier, J.M.; Kubicek, M.F. Environmental fate of ceftiofur sodium, a cephalosporin antibiotic. Role of animal excreta in its decomposition. J. Agric. Food Chem. 1990, 38, 890–894. [Google Scholar] [CrossRef]
- Cai, C.; Gong, P.; Wang, Y.; Wang, M.; Zhang, B.; Wang, B.; Liu, H. Investigating the environmental risks from the use of spray-dried cephalosporin mycelial dreg (CMD) as a soil amendment. J. Hazard. Mater. 2018, 359, 300–306. [Google Scholar] [CrossRef]
- Turner, J.; Muraoka, A.; Bedenbaugh, M.; Childress, B.; Pernot, L.; Wiencek, M.; Peterson, Y.K. The Chemical Relationship Among Beta-Lactam Antibiotics and Potential Impacts on Reactivity and Decomposition. Front. Microbiol. 2022, 13, 807955. [Google Scholar] [CrossRef]
- Hrenovic, J.; Ivankovic, T.; Durn, G.; Dekic, S.; Kazazic, S.; Kisic, I. Presence of carbapenem-resistant bacteria in soils affected by illegal waste dumps. Int. J. Environ. Health Res. 2019, 29, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Keswani, C.; Singh, H.B.; García-Estrada, C.; Caradus, J.; He, Y.-W.; Mezaache-Aichour, S.; Glare, T.R.; Borriss, R.; Sansinenea, E. Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Appl. Microbiol. Biotechnol. 2020, 104, 1013–1034. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. The Future of Food and Agriculture, Trends and Challenges; Food and Agriculture Organization: Rome, Italy, 2017; Volume 4, ISBN 9789251095515. [Google Scholar]
- Christou, M.; De Juan, S.; Vassilopoulou, V.; Stergiou, K.I.; Maynou, F. Monitoring the Environmental, Social and Economic Dimensions of the Landing Obligation Policy. Front. Mar. Sci. 2019, 6, 594. [Google Scholar] [CrossRef]
- Honscha, L.C.; Campos, A.S.; da Silva Junior, F.M. Higiene bucal: Um risco diário para o meio ambiente? Vittalle Rev. Ciências Saúde 2015, 27, 50–53. [Google Scholar]
- Wu, X.; Ernst, F.; Conkle, J.L.; Gan, J. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ. Int. 2013, 60, 15–22. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). OPPTS Ecological Effect Guideline, 850 Series; U.S. Environmental Protection Agency: Washington, DC, USA, 1996.
- FAO. Food and Agriculture Organization of the United Nations (FAO). 2016. Available online: http://www.fao.org/faostat (accessed on 25 June 2022).
- OECD. Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. In OECD Guidelines for the Testing of Chemicals; Section 2; OECD Publishing: Paris, France, 2006. [Google Scholar]
- Da Silva Júnior, F.M.R.; Silva, P.F.; GuimarÃes, F.S.; De Almeida, K.A.; Baisch, P.R.M.; Muccillo-Baisch, A.L. Ecotoxicological Tools for Landfarming Soil Evaluation in a Petrochemical Complex Area. Pedosphere 2014, 24, 280–284. [Google Scholar] [CrossRef]
- Da Silva Júnior, F.M.R.; Garcia, E.M.; Baisch, P.R.M.; Mirlean, N.; Muccillo-Baisch, A.L. Assessment of a soil with moderate level of contamination using lettuce seed assay and terrestrial isopods assimilation assay. Soil Water Res. 2013, 8, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Brasil Ministério da Agricultura, Pecuária e Abastecimento, Secretaria de Defesa Agropecuária. Regras Para Análise de Sementes. 2009. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivospublicacoesinsumos/2946_regras_analise__sementes.pdf (accessed on 9 September 2022).
- Isidori, M.; Lavorgna, M.; Nardelli, A.; Pascarella, L.; Parrella, A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total Environ. 2005, 346, 87–98. [Google Scholar] [CrossRef]
- Opriş, O.; Soran, M.-L.; Coman, V.; Copaciu, F.; Ristoiu, D. Determination of some frequently used antibiotics in waste waters using solid phase extraction followed by high performance liquid chromatography with diode array and mass spectrometry detection. Cent. Eur. J. Chem. 2013, 11, 1343–1351. [Google Scholar] [CrossRef]
- An, B.; Xu, X.; Ma, W.; Huo, M.; Wang, H.; Liu, Z.; Cheng, G.; Huang, L. The adsorption-desorption characteristics and degradation kinetics of ceftiofur in different agricultural soils. Ecotoxicol. Environ. Saf. 2021, 222, 112503. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Sures, B.; Schmidt, T.C. Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. Environ. Pollut. 2018, 241, 1153–1166. [Google Scholar] [CrossRef]
- Wang, X.-H.; Lin, A.Y.-C. Phototransformation of Cephalosporin Antibiotics in an Aqueous Environment Results in Higher Toxicity. Environ. Sci. Technol. 2012, 46, 12417–12426. [Google Scholar] [CrossRef] [PubMed]
- Ranal, M.A.; de Santana, D.G. How and why to measure the germination process? Braz. J. Bot. 2006, 29, 1806–9959. [Google Scholar] [CrossRef] [Green Version]
- Migliore, L.; Cozzolino, S.; Fiori, M. Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 2003, 52, 1233–1244. [Google Scholar] [CrossRef]
- Eom, I.; Rast, C.; Veber, A.; Vasseur, P. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicol. Environ. Saf. 2007, 67, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, J.; Wang, J.; Ma, Z.; Han, P.; Luan, Y.; Lu, A. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Sci. Total Environ. 2015, 521–522, 101–107. [Google Scholar] [CrossRef]
- Huang, R.; Guo, Z.; Gao, S.; Ma, L.; Xu, J.; Yu, Z.; Bu, D. Assessment of veterinary antibiotics from animal manure-amended soil to growing alfalfa, alfalfa silage, and milk. Ecotoxicol. Environ. Saf. 2021, 224, 112699. [Google Scholar] [CrossRef]
- Banerjee, S.; van der Heijden, M.G.A. Soil microbiomes and one health. Nat. Rev. Microbiol. 2022, 23, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chu, L. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotoxicol. Environ. Saf. 2016, 126, 228–237. [Google Scholar] [CrossRef]
- Ye, M.; Sun, M.; Feng, Y.; Wan, J.; Xie, S.; Tian, D.; Zhao, Y.; Wu, J.; Hu, F.; Li, H.; et al. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues. J. Hazard. Mater. 2016, 309, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Pagaling, E.; Gatica, J.; Yang, K.; Cytryn, E.; Yan, T. Phylogenetic diversity of ceftriaxone resistance and the presence of extended-spectrum β-lactamase genes in the culturable soil resistome. J. Glob. Antimicrob. Resist. 2016, 6, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Cui, F.; Yang, Y.; Liu, Y.; Qi, S.; Wang, C. Mechanisms of developmental toxicity in zebrafish embryos (Danio rerio) induced by boscalid. Sci. Total Environ. 2018, 634, 478–487. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Freitas, L.; Honscha, L.C.; Volcão, L.M.; de Lima Brum, R.; da Silva Júnior, F.M.R.; Ramos, D.F. Antibiotics in the Environment: Prescribing Risks to Non-Target Organisms. Pollutants 2022, 2, 435-443. https://doi.org/10.3390/pollutants2040029
da Silva Freitas L, Honscha LC, Volcão LM, de Lima Brum R, da Silva Júnior FMR, Ramos DF. Antibiotics in the Environment: Prescribing Risks to Non-Target Organisms. Pollutants. 2022; 2(4):435-443. https://doi.org/10.3390/pollutants2040029
Chicago/Turabian Styleda Silva Freitas, Livia, Laiz Coutelle Honscha, Lisiane Martins Volcão, Rodrigo de Lima Brum, Flavio Manoel Rodrigues da Silva Júnior, and Daniela Fernandes Ramos. 2022. "Antibiotics in the Environment: Prescribing Risks to Non-Target Organisms" Pollutants 2, no. 4: 435-443. https://doi.org/10.3390/pollutants2040029
APA Styleda Silva Freitas, L., Honscha, L. C., Volcão, L. M., de Lima Brum, R., da Silva Júnior, F. M. R., & Ramos, D. F. (2022). Antibiotics in the Environment: Prescribing Risks to Non-Target Organisms. Pollutants, 2(4), 435-443. https://doi.org/10.3390/pollutants2040029