Numerical Simulation of Dispersion Patterns and Air Emissions for Optimal Location of New Industries Accounting for Environmental Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. AERMOD Dispersion Model
2.2. Air Dispersion and Deposition Modeling
2.2.1. Control Pathway
2.2.2. Source Pathway
2.3. IRAP-h Model
2.4. Methodology for Estimating Exposure to Emissions
2.5. Exposure Scenario Selection
2.6. Exposure Scenario Locations
2.7. Water Bodies and Watersheds
2.8. Estimating Media Concentrations
2.9. Quantification of Exposure
3. Quantification of Cancer Risk and Non-Cancer Hazard
4. Results and Discussion
Risk Characterization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Visscher, A.D. Air Dispersion Modeling: Foundations and Applications; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Guldmann, J.-M.; Shefer, D. Industrial Location and Air Quality Control: A Planning Approach; John Wiley & Sons Inc.: New York, NY, USA, 1980. [Google Scholar]
- Cai, T.; Wang, S.; Xu, Q. Monte Carlo optimization for site selection of new chemical plants. J. Environ. Manag. 2015, 163, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Seangkiatiyuth, K.; Surapipith, V.; Tantrakarnapa, K.; Lothongkum, A.W. Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex. J. Environ. Sci. 2011, 23, 931–940. [Google Scholar] [CrossRef]
- Zou, B.; Wilson, J.; Zhan, F.B.; Zeng, Y. Performance of AERMOD at different time scales. Simul. Model. Pract. Theory 2010, 18, 612–623. [Google Scholar] [CrossRef]
- Macêdo, M.F.M.; Ramos, A.L.D. Vehicle atmospheric pollution evaluation using AERMOD model at avenue in a Brazilian capital city. Air Qual. Atmos. Health 2020, 13, 309–320. [Google Scholar] [CrossRef]
- Huang, D.; Guo, H. Dispersion modeling of odour, gases, and respirable dust using AERMOD for poultry and dairy barns in the Canadian Prairies. Sci. Total Environ. 2019, 690, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Kakareka, S.V.; Salivonchyk, S.V.; Kakosh, Y.G. AERMOD application for assessment of formaldehyde emission dispersion from chipboard production. Russ. Meteorol. Hydrol. 2019, 44, 338–344. [Google Scholar] [CrossRef]
- Amoatey, P.; Omidvarborna, H.; Affum, H.A.; Baawain, M. Performance of AERMOD and CALPUFF models on SO2 and NO2 emissions for future health risk assessment in Tema Metropolis. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 772–786. [Google Scholar] [CrossRef]
- Omidvarborna, H.; Baawain, M.; Al-Mamun, A.; Al-Muhtaseb, A. Dispersion and deposition estimation of fugitive iron particles from an iron industry on nearby communities via AERMOD. Environ. Monit. Assess 2018, 190, 655. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Cerqueira, J.; de Albuquerque, H.N.; de Assis Salviano de Sousa, F. Atmospheric pollutants: Modeling with Aermod software. Air Qual. Atmos. Health 2019, 12, 21–32. [Google Scholar] [CrossRef]
- Matacchiera, F.; Manes, C.; Beaven, R.P.; Rees-White, T.C.; Boano, F.; Mønster, J.; Scheutz, C. AERMOD as a Gaussian dispersion model for planning tracer gas dispersion tests for landfill methane emission quantification. Waste Manag. 2019, 87, 924–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askariyeh, M.H.; Kota, S.H.; Vallamsundar, S.; Zietsman, J.; Ying, Q. AERMOD for near-road pollutant dispersion: Evaluation of model performance with different emission source representations and low wind options. Transp. Res. Part D Transp. Environ. 2017, 57, 392–402. [Google Scholar] [CrossRef]
- Tamer, A.; Ramadan, M.A.E.; Hesham, G.; Bahnassy, M.H.; Kishk, F.M.; Selim, H.M. Heavy metals accumulation and spatial distribution in long term wastewater irrigated soils. J. Environ. Chem. Eng. 2003, 1, 925–933. [Google Scholar]
- Afsaneh, A.; Rashid, M.; Afzali, M.; Younesi, V. Prediction of air pollutants concentrations from multiple sources using AERMOD coupled with WRF prognostic model. J. Clean. Prod. 2017, 166, 1216–1225. [Google Scholar]
- Fernando, A.S.A.; Ricardo, C.A.; Nelson, L.C.D. Statistical evaluation of a new air dispersion model against AERMOD using the Prairie Grass data set. J. Air Waste Manag. Assoc. 2014, 64, 219–226. [Google Scholar]
- Awkash, K.; Rashmi, S.P.; Anil Kumar, D.; Rakesh, K. Application of WRF Model for Air Quality Modelling and AERMOD—A Survey. Aerosol Air Qual. Res. 2017, 17, 1925–1937. [Google Scholar]
- Yusef, O.K.; Pierre, S.; Adewale, M.T.; Alessandra, M.; Shirin, E.; Rajab, R. Modeling of particulate matter dispersion from a cement plant: Upwinddownwind case study. J. Environ. Chem. Eng. 2018, 6, 3104–3110. [Google Scholar]
- Wark, K.; Warner, C.F.; Davis, W.T. Air Pollution: Its Origin and Control, 3rd ed.; Prentice Hall: Menlo Park, CA, USA, 1997. [Google Scholar]
- USEPA. User’s Guide for the AMS/EPA Regulatory Model AERMOD; Office of Air Quality Planning and Standards Emissions, Monitoring, and Analysis Division: Durham, NC, USA, 2005.
- Bhardwaj, K.S. Examination of Sensitivity of Land Use Parameters and Population on the Performance of the AERMOD Model for an Urban Area; University of Toledo: Toledo, OH, USA, 2005. [Google Scholar]
- USEPA. Mercury Study Report to Congress. Available online: http://www.epa.gov/mercury/mercury-study-report-congress (accessed on 27 February 2016).
- USEPA. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities; Office of Solid Waste and Emergency Response (5305W): Washington, DC, USA, 2005.
- USEPA. Expobox. Available online: https://www.epa.gov/expobox/exposure-assessment-tools-routes-ingestion#calculations (accessed on 1 March 2021).
Name | Half | Min | Max | Min | Max |
---|---|---|---|---|---|
Longitude | Longitude | Latitude | Latitude | ||
Toledo | West | −84°00′00″ | −83°00′00″ | 41°00′00″ | 42°00′00″ |
Toledo | East | −83°00′00″ | −82°00′00″ | 41°00′00″ | 42°00′00″ |
Source Parameter | Mercury |
---|---|
Diffusivity in air (cm2/s) | 1.09 × 10−2 |
Diffusivity in water (cm2/s) | 3.01 × 10−52 |
Cuticular resistance (s/cm) | 1.00 × 105 |
Henry’s law constant (Pa·m3/mol) | 7.19 × 102 |
Particle | Method | Particle Diameter (Microns) | Mass Fraction | Particle Density (g/cm3) |
---|---|---|---|---|
Particle dry | Method 1: 10% or more has a diameter ≥10 microns | 2.5 | 0.450 | 1 |
10 | 0.550 | 1 | ||
Particle-bounddry | Method 1: 10% or more has a diameter ≥10 microns | 2.5 | 0.766 | 1 |
10 | 0.234 | 1 |
Exposure Pathways | Exposure Scenarios | ||||||
---|---|---|---|---|---|---|---|
Farmer | Farmer Child | Adult Resident | Child Resident | Fisher | Fisher Child | Acute Risk a | |
Inhalation of vapors and particulates | X | X | X | X | X | X | X |
Incidental ingestion of soil | X | X | X | X | X | X | |
Ingestion of homegrown produce | X | X | X | X | X | X | |
Ingestion of homegrown beef | X | X | |||||
Ingestion of milk from homegrown cows | X | X | |||||
Ingestion of homegrown chicken | X | X | |||||
Ingestion of eggs from homegrown chickens | X | X | |||||
Ingestion of homegrown pork | X | X | |||||
Ingestion of fish | X | X | |||||
Ingestion of breast milk b | X | X | X |
Site-Specific Parameters | Value | Unit |
---|---|---|
Average annual runoff | 73.25 | cm/year |
Average annual precipitation | 86.97 | cm/year |
Average annual irrigation | 0 | cm/year |
Average annual evapotranspiration | 86.36 | cm/year |
USLE Rainfall Factor | 100 | (year−1) |
Depth of water column | 18.90 | m |
Average volumetric flow rate through water body | 175 × 109 | m3/year |
USLE Cover and Management Factor | 0.10 | unitless |
Recommended Exposure Scenario Receptor | Value | Source |
---|---|---|
Child resident | 6 years | US EPA 1990f, 1994r |
Adult resident | 30 years | US EPA 1990f, 1994r |
Fisher | 30 years | US EPA 1990f, 1994r |
Fisher child | 6 years | Assumed to be the same as the child resident |
Farmer | 40 years | US EPA 1994l, 1994r |
Farmer child | 6 years | Assumed to be the same as the child resident |
Location | Resident | Farmer | Fisher | |||
---|---|---|---|---|---|---|
Adult | Child | Adult | Child | Adult | Child | |
1 | 1.07E-02 | 3.12E-02 | 2.35E-02 | 4.86E-02 | 1.87E+01 | 1.32E+01 |
2 | 1.58E-01 | 4.24E-01 | 3.54E-01 | 7.32E-01 | 1.10E+02 | 7.78E+01 |
3 | 1.47E-02 | 3.94E-02 | 3.28E-02 | 6.78E-02 | 1.36E+01 | 9.58E+00 |
4 | 9.83E-03 | 2.56E-02 | 2.11E-02 | 2.79E-03 | 1.09E+01 | 7.70E+00 |
COPC | Location 1 | Location 2 | Location 3 | Location 4 |
---|---|---|---|---|
Soil (mg/kg soil) | 2.4481E-04 to 1.2711E-01 | 1.7812E-4 to 2.0133E+00 | 6.8108E-05 to 1.9279E-01 | 6.8266E-05 to 1.3595E-01 |
Produce (mg/kg) | 6.5395E+06 to 2.3740E-04 | 4.4271E-06 to 4.3707E-03 | 1.8472E-06 to 4.0755E-04 | 1.9313E-06 to 2.4649E-04 |
Beef (mg/kg FW tissue) | 8.2718E-07 to 8.1237E-04 | 6.0159E-07 to 1.3045E-02 | 2.4241E-07 to 1.2458E-03 | 2.6140E-07 to 8.6513E-04 |
Chicken and eggs (mg/kg FW tissue) | 4.4613E-08 to 1.4493E-04 | 3.2265E-08 to 2.2937E-03 | 1.2337E-08 to 2.1964E-04 | 1.2366E-08 to 1.5488E-04 |
Milk (mg/kg FW tissue) | 4.9078E-07 to 3.4000E-04 | 3.5727E-07 to 5.5037E-03 | 1.4470E-07 to 5.2485E-04 | 1.5713E-07 to 3.6137E-04 |
Pork (mg/kg FW tissue) | 1.2554E-09 to 3.4941E-06 | 9.1348E-10 to 5.5324E-05 | 3.5269E-10 to 5.2974E-06 | 3.6070E-10 to 3.7333E-06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bseibsu, A.; Madhuranthakam, C.M.R.; Yetilmezsoy, K.; Almansoori, A.; Elkamel, A. Numerical Simulation of Dispersion Patterns and Air Emissions for Optimal Location of New Industries Accounting for Environmental Risks. Pollutants 2022, 2, 444-461. https://doi.org/10.3390/pollutants2040030
Bseibsu A, Madhuranthakam CMR, Yetilmezsoy K, Almansoori A, Elkamel A. Numerical Simulation of Dispersion Patterns and Air Emissions for Optimal Location of New Industries Accounting for Environmental Risks. Pollutants. 2022; 2(4):444-461. https://doi.org/10.3390/pollutants2040030
Chicago/Turabian StyleBseibsu, Ali, Chandra Mouli R. Madhuranthakam, Kaan Yetilmezsoy, Ali Almansoori, and Ali Elkamel. 2022. "Numerical Simulation of Dispersion Patterns and Air Emissions for Optimal Location of New Industries Accounting for Environmental Risks" Pollutants 2, no. 4: 444-461. https://doi.org/10.3390/pollutants2040030
APA StyleBseibsu, A., Madhuranthakam, C. M. R., Yetilmezsoy, K., Almansoori, A., & Elkamel, A. (2022). Numerical Simulation of Dispersion Patterns and Air Emissions for Optimal Location of New Industries Accounting for Environmental Risks. Pollutants, 2(4), 444-461. https://doi.org/10.3390/pollutants2040030