Repowering Feasibility Study of a Current Hybrid Renewable System. Case Study, Galapagos Islands
Abstract
:1. Introduction
1.1. Context and Motivation
1.2. Literature Review
1.3. Contributions
- -
- First, a feasibility study was done to repower the current renewable system (PV–WT–BAT), as well as the battery storage system of the San Cristobal, Baltra, and Santa Cruz Islands in the Galapagos archipelago, with the aim of minimizing the penetration of diesel generators. The optimization problem is solved by EnergyPlan software.
- -
- Dispatch simulations were carried out for each possible combined capacity of energy sources. It is observed that in the long term, renewable sources offer more feasibility.
- -
- A virtual interconnection is made between the Baltra Islands—Santa Cruz and San Cristóbal, forming a single system; the energy exchange allows to improve the storage capacity and energy reserve.
- -
- The analysis presented in this paper includes the study of various capabilities of WT, PV, BAT, and DG. The minimum cost is reached with specific values of each component.
- -
- The evolution of the total cost is analyzed with respect to variation of the DG, PV, and WT capacity.
- -
- The behavior of CO2 emissions with respect to the variation of DG, PV, and WT capacity is studied. By 2050, the DG operation is mitigated.
- -
- The surplus electricity with respect to the variation of the capacities of PV and WT is analyzed.
- -
- A study of the total annual cost and imported energy is presented with respect to the variation in the capacity of the energy storage system. Lower costs are not always achieved by increasing BAT capacity.
- -
- Finally, the energy flow between the three Islands proposed in this paper is studied.
2. Methodology
3. Mathematical Models
3.1. PV System
3.2. Wind Turbine
3.3. Diesel Generator
3.4. Batteries
3.5. Simulation Strategy
4. Results
4.1. Economic Results
4.2. Environmental Results
4.3. Energetic Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weir, T. Renewable energy in the Pacific Islands: Its role and status. Renew. Sustain. Energy Rev. 2018, 94, 762–771. [Google Scholar] [CrossRef]
- Eras-Almeida, A.; Aguilera, M.A.E. Hybrid renewable mini-grids on non-interconnected small islands: Review of case studies. Renew. Sustain. Energy Rev. 2019, 116, 109417. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhang, Y.; Zhou, B.; Li, C.; Cao, Y.; Li, L.; Zeng, L. A review of renewable energy utilization in islands. Renew. Sustain. Energy Rev. 2016, 59, 504–513. [Google Scholar] [CrossRef]
- Senjyu, T.; Hayashi, D.; Yona, A.; Urasaki, N.; Funabashi, T. Optimal configuration of power generating systems in isolated island with renewable energy. Renew. Energy 2007, 32, 1917–1933. [Google Scholar] [CrossRef]
- Hamilton, J.; Negnevitsky, M.; Wang, X.; Lyden, S. High penetration renewable generation within Australian isolated and remote power systems. Energy 2019, 168, 684–692. [Google Scholar] [CrossRef]
- Llerena-Pizarro, O.R.; Micena, R.P.; Tuna, C.E.; Silveira, J.L. Electricity sector in the Galapagos Islands: Current status, renewable sources, and hybrid power generation system proposal. Renew. Sustain. Energy Rev. 2019, 108, 65–75. [Google Scholar] [CrossRef]
- Bueno, C.; Carta, J. Technical-economic analysis of wind-powered pumped hydrostorage systems. Part II: Model application to the island of El Hierro. Sol. Energy 2005, 78, 396–405. [Google Scholar] [CrossRef]
- Meza, C.G.; Rodríguez, C.Z.; D′Aquino, C.A.; Amado, N.B.; Rodrigues, A.; Sauer, I. Toward a 100% renewable island: A case study of Ometepe′s energy mix. Renew. Energy 2019, 132, 628–648. [Google Scholar] [CrossRef]
- Bae, J.; Lee, S.; Kim, H. Comparative study on the economic feasibility of nanogrid and microgrid electrification: The case of Jeju Island, South Korea. Energy Environ. 2021, 32, 168–188. [Google Scholar] [CrossRef]
- Diaf, S.; Belhamel, M.; Haddadi, M.; Louche, A. Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica Island. Energy Policy 2008, 36, 743–754. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Tong, N.; Li, Z.; Sun, S.; Liu, C. Optimal planning of a 100% renewable energy island supply system based on the integration of a concentrating solar power plant and desalination units. Int. J. Electr. Power Energy Syst. 2020, 117, 105707. [Google Scholar] [CrossRef]
- Alves, M.; Segurado, R.; Costa, M. Increasing the penetration of renewable energy sources in isolated islands through the interconnection of their power systems. The case of Pico and Faial islands, Azores. Energy 2019, 182, 502–510. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L. A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island. Appl. Energy 2014, 121, 149–158. [Google Scholar] [CrossRef]
- Kazem, H.A.; Al-Badi, H.A.S.; Al Busaidi, A.S.; Chaichan, M.T. Optimum design and evaluation of hybrid solar/wind/diesel power system for Masirah Island. Environ. Dev. Sustain. 2017, 19, 1761–1778. [Google Scholar] [CrossRef]
- Masrur, H.; Howlader, H.O.R.; Elsayed Lotfy, M.; Khan, K.R.; Guerrero, J.M.; Senjyu, T. Analysis of techno-economic-environmental suitability of an isolated microgrid system located in a Remote Island of Bangladesh. Sustainability 2020, 12, 2880. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Vinco, S.; Baek, D.; Quer, S.; Macii, E.; Poncino, M. Cost-aware design and simulation of electrical energy systems. Energies 2020, 13, 2949. [Google Scholar] [CrossRef]
- Chen, Y.; Vinco, S.; Pagliari, D.J.; Montuschi, P.; Macii, E.; Poncino, M. Modeling and simulation of cyber-physical electrical energy systems with System C-AMS. IEEE Trans. Sustain. Comput. 2020, 5, 552–567. [Google Scholar] [CrossRef]
- Clairand, J.-M.; Álvarez-Bel, C.; Rodríguez-García, J.; Escrivá-Escrivá, G. Impact of electric vehicle charging strategy on the long-term planning of an isolated microgrid. Energies 2020, 13, 3455. [Google Scholar] [CrossRef]
- Eras-Almeida, A.; Aguilera, M.A.E.; Blechinger, P.; Berendes, S.; Caamaño, E.; García-Alcalde, E. Decarbonizing the Galapagos Islands: Techno-economic perspectives for the hybrid renewable mini-grid Baltra–Santa Cruz. Sustainability 2020, 12, 2282. [Google Scholar] [CrossRef] [Green Version]
- Cano, A.; Arévalo, P.; Jurado, F. A comparison of sizing methods for a long-term renewable hybrid system. Case study: Galapagos Islands 2031. Sustain. Energy Fuels 2021, 5, 1548–1566. [Google Scholar] [CrossRef]
- Ngan, M.S.; Tan, C.W. Assessment of economic viability for PV/wind/diesel hybrid energy system in southern Peninsular Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 634–647. [Google Scholar] [CrossRef]
- Hassani, H.; Zaouche, F.; Rekioua, D.; Belaid, S.; Rekioua, T.; Bacha, S. Feasibility of a standalone photovoltaic/battery system with hydrogen production. J. Energy Storage 2020, 31, 101644. [Google Scholar] [CrossRef]
- Rezk, H.; Dousoky, G.M. Technical and economic analysis of different configurations of stand-alone hybrid renewable power systems—A case study. Renew. Sustain. Energy Rev. 2016, 62, 941–953. [Google Scholar] [CrossRef]
- Deshmukh, M.; Singh, A.B. Modeling of energy performance of stand-alone SPV system using HOMER pro. Energy Proced. 2019, 156, 90–94. [Google Scholar] [CrossRef]
- Bahramara, S.; Moghaddam, M.P.; Haghifam, M. Optimal planning of hybrid renewable energy systems using HOMER: A review. Renew. Sustain. Energy Rev. 2016, 62, 609–620. [Google Scholar] [CrossRef]
- Groppi, D.; Garcia, D.A.; Basso, G.L.; De Santoli, L. Synergy between smart energy systems simulation tools for greening small Mediterranean islands. Renew. Energy 2019, 135, 515–524. [Google Scholar] [CrossRef]
- Marczinkowski, H.M.; Østergaard, P.A. Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands Samsø and Orkney. Energy 2019, 175, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Pillai, J.R.; Heussen, K.; Østergaard, P.A. Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios. Energy 2011, 36, 3233–3243. [Google Scholar] [CrossRef]
- Edoo, M.; King, R.T.A. New insights into the technical challenges of the Mauritius long term energy strategy. Energy 2020, 195, 116975. [Google Scholar] [CrossRef]
- Lund, H.; Duić, N.; Krajacic, G.; Carvalho, M.D.G. Two energy system analysis models: A comparison of methodologies and results. Energy 2007, 32, 948–954. [Google Scholar] [CrossRef]
- Pfeifer, A.; Dobravec, V.; Pavlinek, L.; Krajacic, G.; Duić, N. Integration of renewable energy and demand response technologies in interconnected energy systems. Energy 2018, 161, 447–455. [Google Scholar] [CrossRef]
- Alves, M.; Segurado, R.; Costa, M. On the road to 100% renewable energy systems in isolated islands. Energy 2020, 198, 117321. [Google Scholar] [CrossRef]
- Yue, C.-D.; Chen, C.-S.; Lee, Y.-C. Integration of optimal combinations of renewable energy sources into the energy supply of Wang-An Island. Renew. Energy 2016, 86, 930–942. [Google Scholar] [CrossRef]
- Electricity Company ELECGALAPAGOS. Statistics: Electricity Demand of Baltra and Santa Cruz 2018. Unpublished work.
- Arévalo, P.; Cano, A.; Benavides, J.; Jurado, F. Feasibility study of a renewable system (PV/HKT/GB) for hybrid tramway based on fuel cell and super capacitor. IET Renew. Power Gener. 2021, 15, 491–503. [Google Scholar] [CrossRef]
- Mandal, S.; Das, B.K.; Hoque, N. Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh. J. Clean. Prod. 2018, 200, 12–27. [Google Scholar] [CrossRef]
- Sultan, H.M.; Diab, A.A.Z.; Kuznetsov, N.S.; Zubkova, S.I. Design and evaluation of PV-wind hybrid system with hydroelectric pumped storage on the National Power System of Egypt. Glob. Energy Interconnect. 2018, 1, 301–311. [Google Scholar] [CrossRef]
- Bana, S.; Saini, R. A mathematical modeling framework to evaluate the performance of single diode and double diode based SPV systems. Energy Rep. 2016, 2, 171–187. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, A.; Gao, M.; Jiang, H.; Kang, Y.; Zhang, F.; Fei, T. Towards feasibility of photovoltaic road for urban traffic-solar energy estimation using street view image. J. Clean. Prod. 2019, 228, 303–318. [Google Scholar] [CrossRef]
- Arévalo, P.; Jurado, F. Performance analysis of a PV/HKT/WT/DG hybrid autonomous grid. Electr. Eng. 2021, 103, 227–244. [Google Scholar] [CrossRef]
- Ruiz-álvarez, S.; Patiño, J.; Márquez, A.; Espinosa, J. Optimal design for an electrical hybrid micro grid in Colombia under fuel price variation. Int. J. Renew. Energy Res. 2017, 7, 1535–1545. [Google Scholar]
- Fathima, H.; Palanisamy, K. Optimization in microgrids with hybrid energy systems—A review. Renew. Sustain. Energy Rev. 2015, 45, 431–446. [Google Scholar] [CrossRef]
- Akhtari, M.R.; Baneshi, M. Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer. Energy Convers. Manag. 2019, 188, 131–141. [Google Scholar] [CrossRef]
- Schmid, F.; Winzer, J.; Pasemann, A.; Behrendt, F. An open-source modeling tool for multi-objective optimization of renewable nano/micro-off-grid power supply system: Influence of temporal resolution, simulation period, and location. Energy 2021, 219, 119545. [Google Scholar] [CrossRef]
- Arévalo-Codero, P.; Benavides, D.J.; Leonardo, J.; Hernández-Callejo, L.; Jurado, F. Optimal energy management strategies to reduce diesel consumption for a hybrid off-grid system. Rev. Fac. Ing. Univ. Antioq. 2020, 98, 47–58. [Google Scholar] [CrossRef]
- Arévalo, P.; Benavides, D.; Lata-García, J.; Jurado, F. Techno-economic evaluation of renewable energy systems combining PV-WT-HKT sources: Effects of energy management under Ecuadorian conditions. Int. Trans. Electr. Energy Syst. 2020, 30, 12567. [Google Scholar] [CrossRef]
- Tani, A.; Camara, M.B.; Dakyo, B. Energy management in the decentralized generation systems based on renewable energy—Ultracapacitors and battery to compensate the wind/load power fluctuations. IEEE Trans. Ind. Appl. 2015, 51, 1817–1827. [Google Scholar] [CrossRef]
- Rodríguez-Gallegos, C.D.; Gandhi, O.; Bieri, M.; Reindl, T.; Panda, S. A diesel replacement strategy for off-grid systems based on progressive introduction of PV and batteries: An Indonesian case study. Appl. Energy 2018, 229, 1218–1232. [Google Scholar] [CrossRef]
- Cordero, P.A.; García, J.L.; Jurado, F. Optimization of an off-grid hybrid system using lithium ion batteries. Acta Polytech. Hung. 2020, 17, 185–206. [Google Scholar] [CrossRef]
- Arévalo, P.; Tostado-Véliz, M.; Jurado, F. A novel methodology for comprehensive planning of battery storage systems. J. Energy Storage 2021, 37, 102456. [Google Scholar] [CrossRef]
- Baruah, A.; Basu, M.; Amuley, D. Modeling of an autonomous hybrid renewable energy system for electrification of a township: A case study for Sikkim, India. Renew. Sustain. Energy Rev. 2021, 135, 110158. [Google Scholar] [CrossRef]
- Shiroudi, A.; Rashidi, R.; Gharehpetian, G.B.; Mousavifar, S.A.; Foroud, A.A. Case study: Simulation and optimization of photovoltaic-wind-battery hybrid energy system in Taleghan-Iran using homer software. J. Renew. Sustain. Energy 2012, 4, 053111. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Chen, Z. Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system. Energy 2019, 166, 796–806. [Google Scholar] [CrossRef]
- Advanced Energy Systems Analysis Computer Model. Available online: https://www.energyplan.eu/ (accessed on 11 October 2021).
- Cosme, D.L.S.; Saavedra, O.R.; Ribeiro, L.A.D.S.; de Matos, J.G.; Oliveira, H.A.; de Lima, S.L.; Pinheiro, L.D.P.A. Performance analysis and impact of the improvements added in ten-years of operation of microgrid of Lençóis Island. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Institute of Electrical and Electronics Engineers (IEEE), Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 2458–2463. [Google Scholar]
Island | DG (kW) | WT (kW) | PV (kW) | BAT (kWh) |
---|---|---|---|---|
San Cristóbal | 8990 | 2400 | 12 | - |
Santa Cruz–Baltra | 13,900 | 2250 | 1575 | 4300 |
Component | Parameter | Unit | Cost |
---|---|---|---|
PV | Capital | $/kWp | 1210 |
Replacement | $/kWp | 484 | |
O&M | $/kWp/year | 15 | |
WT | Capital | $/kW | 1500 |
Replacement | $/kW | 1200 | |
O&M | $/kW/year | 19 | |
BAT | Capital | $/kWh | 300 |
Replacement | $/kWh | 240 | |
O&M | $/kWh/year | 3.75 | |
DG | Capital | $/kW | 0 |
Replacement | $/kW | 340 | |
O&M | $/kW/year | 3 |
Component | Type | Power of Each Unit | Technical Parameter for This Simulation |
---|---|---|---|
PV | Mitsubishi monocrystalline silicon modules | 265 Wp | monocrystalline |
WT | UNISON U57 | 750 kW | cut in wind speed 2.5 m/s; rated 11 m/s; cut off 25 m/s |
BAT | Stationary lead-acid batteries | 1500 Ah | Useful life 7 years |
DG | Four Caterpillar DGs | 650 kW | |
One Caterpillar genset | 1100 kW | Generic | |
Six Hyundai DGs | 1700 kW |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arévalo, P.; Tostado-Véliz, M.; Jurado, F. Repowering Feasibility Study of a Current Hybrid Renewable System. Case Study, Galapagos Islands. Electricity 2021, 2, 487-502. https://doi.org/10.3390/electricity2040029
Arévalo P, Tostado-Véliz M, Jurado F. Repowering Feasibility Study of a Current Hybrid Renewable System. Case Study, Galapagos Islands. Electricity. 2021; 2(4):487-502. https://doi.org/10.3390/electricity2040029
Chicago/Turabian StyleArévalo, Paul, Marcos Tostado-Véliz, and Francisco Jurado. 2021. "Repowering Feasibility Study of a Current Hybrid Renewable System. Case Study, Galapagos Islands" Electricity 2, no. 4: 487-502. https://doi.org/10.3390/electricity2040029
APA StyleArévalo, P., Tostado-Véliz, M., & Jurado, F. (2021). Repowering Feasibility Study of a Current Hybrid Renewable System. Case Study, Galapagos Islands. Electricity, 2(4), 487-502. https://doi.org/10.3390/electricity2040029