A Nexus-Based Impact Assessment of Rapid Transitions of the Power Sector: The Case of Greece
Abstract
:1. Introduction
1.1. Challenges and Opportunities of Power System Transformation
1.2. Research Gap and Paper’s Contribution
2. Materials and Methods
2.1. Modelling Framework
2.1.1. Power and Land Systems Illustration
2.1.2. Evaluating the Socioeconomic Consequences of Power System Development
2.1.3. Scenario Framework
- Achieving a renewable technology share in the power mix of over 65% by 2030;
- Phasing out all lignite power plants by 2023, apart from “Ptolemaida V”, which will continue to operate until 2028;
- Integrating non-interconnected islands into the main grid by 2030.
- No new investments in natural gas technologies are allowed from 2022 onwards;
- The existing infrastructure of natural gas power plants depreciates by 10% annually, starting from 2022, until its complete phase-out in 2035.
3. Results and Discussion
3.1. Simulation Results
3.2. Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LAI | Land Area Impact |
CGE | Computable General Equilibrium |
GDP | Gross Domestic Product |
OSeMOSYS | Open-Source energy MOdeling SYStem |
REF | Reference Energy System |
NECP | National Energy and Climate Plan |
ST | Steam Turbines |
CCGT | Combined Cycle Gas Turbines |
OCGT | Open Cycle Gas Turbines |
CHP | Combined Heat and Power |
PV | Photovoltaics |
CSP | Concentrated Solar Power |
LTS | Long Term Strategy 2050 |
RoW | Rest of the World |
SSP2 | Second Shared Socioeconomic Pathway |
NPV | Net Present Value |
ETS | Emissions Trading Scheme |
PVT | Solar Photovoltaic Thermal |
LCOE | Levelized Cost of Electricity |
GIS | Geographic Information Systems |
References
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The Trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Tong, S.; Bambrick, H.; Beggs, P.J.; Chen, L.; Hu, Y.; Ma, W.; Steffen, W.; Tan, J. Current and future threats to human health in the Anthropocene. Environ. Int. 2022, 158, 106892. [Google Scholar] [CrossRef] [PubMed]
- Popescu, C.R.G.; González, A.L. Current High-Powered Challenges and High-Reaching Reforms: Moving to a New Economic Model Based on Green Energy, Digitalization, and Shock Resistance. In Frameworks for Sustainable Development Goals to Manage Economic, Social, and Environmental Shocks and Disasters; IGI Global: Hershey, PA, USA, 2022; pp. 133–154. [Google Scholar] [CrossRef]
- Zakeri, B.; Gissey, G.C.; Dodds, P.E.; Subkhankulova, D. Centralized vs. Distributed Energy Storage—Benefits for Residential Users. Energy 2021, 236, 121443. [Google Scholar] [CrossRef]
- Gitelman, L.; Kozhevnikov, M. Energy Transition Manifesto: A Contribution towards the Discourse on the Specifics Amid Energy Crisis. Energies 2022, 15, 9199. [Google Scholar] [CrossRef]
- Baruah, D.C.; Enweremadu, C.C. Prospects of Decentralized Renewable Energy to Improve Energy Access: A Resource-Inventory-Based Analysis of South Africa. Renew. Sustain. Energy Rev. 2019, 103, 328–341. [Google Scholar] [CrossRef]
- Hondo, H.; Moriizumi, Y. Employment Creation Potential of Renewable Power Generation Technologies: A Life Cycle Approach. Renew. Sustain. Energy Rev. 2017, 79, 128–136. [Google Scholar] [CrossRef]
- Price, J.; Zeyringer, M.; Konadu, D.; Sobral Mourão, Z.; Moore, A.; Sharp, E. Low Carbon Electricity Systems for Great Britain in 2050: An Energy-Land-Water Perspective. Appl. Energy 2018, 228, 928–941. [Google Scholar] [CrossRef]
- Santangeli, A.; Toivonen, T.; Pouzols, F.M.; Pogson, M.; Hastings, A.; Smith, P.; Moilanen, A. Global Change Synergies and Trade-offs between Renewable Energy and Biodiversity. GCB Bioenergy 2016, 8, 941–951. [Google Scholar] [CrossRef]
- Bennun, L.; van Bochove, J.; Ng, C.; Fletcher, C.; Wilson, D.; Phair, N.; Carbone, G. Mitigating Biodiversity Impacts Associated with Solar and Wind Energy Development; International Union for Conservation of Nature: Gland, Switzerland, 2021. [Google Scholar]
- Pasqualetti, M.J. Opposing Wind Energy Landscapes: A Search for Common Cause. Ann. Assoc. Am. Geogr. 2011, 101, 907–917. [Google Scholar] [CrossRef]
- Jones, N.F.; Pejchar, L. Comparing the Ecological Impacts of Wind and Oil & Gas Development: A Landscape Scale Assessment. PLoS ONE 2013, 8, e81391. [Google Scholar] [CrossRef]
- Mörtberg, U.; Pang, X.-L.; Treinys, R.; Trubins, R.; Mozgeris, G. Sustainability Assessment of Intensified Forestry—Forest Bioenergy versus Forest Biodiversity Targeting Forest Birds. Sustainability 2021, 13, 2789. [Google Scholar] [CrossRef]
- Palmer-Wilson, K.; Donald, J.; Robertson, B.; Lyseng, B.; Keller, V.; Fowler, M.; Wade, C.; Scholtysik, S.; Wild, P.; Rowe, A. Impact of Land Requirements on Electricity System Decarbonisation Pathways. Energy Policy 2019, 129, 193–205. [Google Scholar] [CrossRef]
- Berrill, P.; Arvesen, A.; Scholz, Y.; Gils, H.C.; Hertwich, E.G. Environmental Impacts of High Penetration Renewable Energy Scenarios for Europe. Environ. Res. Lett. 2016, 11, 14012. [Google Scholar] [CrossRef]
- Trainor, A.M.; McDonald, R.I.; Fargione, J. Energy Sprawl Is the Largest Driver of Land Use Change in United States. PLoS ONE 2016, 11, e0162269. [Google Scholar] [CrossRef]
- Wu, G.C.; Torn, M.S.; Williams, J.H. Incorporating Land-Use Requirements and Environmental Constraints in Low-Carbon Electricity Planning for California. Environ. Sci. Technol. 2015, 49, 2013–2021. [Google Scholar] [CrossRef]
- Paltsev, S.; Capros, P. Cost Concepts for Climate Change Mitigation. Clim. Chang. Econ. 2013, 4, 1340003. [Google Scholar] [CrossRef]
- Cergibozan, R. Renewable Energy Sources as a Solution for Energy Security Risk: Empirical Evidence from OECD Countries. Renew. Energy 2022, 183, 617–626. [Google Scholar] [CrossRef]
- Koutsandreas, D.; Spiliotis, E.; Doukas, H.; Psarras, J. What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece. Energies 2021, 14, 2235. [Google Scholar] [CrossRef]
- Grottera, C.; La Rovere, E.L.; Wills, W.; Pereira, A.O., Jr. The Role of Lifestyle Changes in Low-Emissions Development Strategies: An Economy-Wide Assessment for Brazil. Clim. Policy 2020, 20, 217–233. [Google Scholar] [CrossRef]
- Almulla, Y.; Ramirez, C.; Joyce, B.; Huber-Lee, A.; Fuso-Nerini, F. From Participatory Process to Robust Decision-Making: An Agriculture-Water-Energy Nexus Analysis for the Souss-Massa Basin in Morocco. Energy Sustain. Dev. 2022, 70, 314–338. [Google Scholar] [CrossRef]
- Asiaban, S.; Kayedpour, N.; Samani, A.E.; Bozalakov, D.; De Kooning, J.D.M.; Crevecoeur, G.; Vandevelde, L. Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System. Energies 2021, 14, 2630. [Google Scholar] [CrossRef]
- Halbrügge, S.; Buhl, H.U.; Fridgen, G.; Schott, P.; Weibelzahl, M.; Weissflog, J. How Germany Achieved a Record Share of Renewables during the COVID-19 Pandemic While Relying on the European Interconnected Power Network. Energy 2022, 246, 123303. [Google Scholar] [CrossRef]
- Sani, L.; Khatiwada, D.; Harahap, F.; Silveira, S. Decarbonization Pathways for the Power Sector in Sumatra, Indonesia. Renew. Sustain. Energy Rev. 2021, 150, 111507. [Google Scholar] [CrossRef]
- Gielen, D. Critical Materials for the Energy Transition; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021; ISBN 978-92-9260-366-3. [Google Scholar]
- Arvesen, A.; Luderer, G.; Pehl, M.; Bodirsky, B.L.; Hertwich, E.G. Deriving Life Cycle Assessment Coefficients for Application in Integrated Assessment Modelling. Environ. Model. Softw. 2018, 99, 111–125. [Google Scholar] [CrossRef]
- Bacher, J.; Pohjalainen, E.; Yli-Rantala, E.; Boonen, K.; Nelen, D. Environmental Aspects Related to the Use of Critical Raw Materials in Priority Sectors and Value Chains; European Topic Centre Waste and Materials in a Green Economy: Flanders, Belgium, 2020. [Google Scholar]
- Khan, Z.; Linares, P.; Rutten, M.; Parkinson, S.; Johnson, N.; García-González, J. Spatial and Temporal Synchronization of Water and Energy Systems: Towards a Single Integrated Optimization Model for Long-Term Resource Planning. Appl. Energy 2018, 210, 499–517. [Google Scholar] [CrossRef]
- Parkinson, S.C.; Makowski, M.; Krey, V.; Sedraoui, K.; Almasoud, A.H.; Djilali, N. A Multi-Criteria Model Analysis Framework for Assessing Integrated Water-Energy System Transformation Pathways. Appl. Energy 2018, 210, 477–486. [Google Scholar] [CrossRef]
- Adesanya, A.A.; Sommerfeldt, N.; Pearce, J.M. Achieving 100% Renewable and Self-Sufficient Electricity in Impoverished, Rural, Northern Climates: Case Studies from Upper Michigan, USA. Electricity 2022, 3, 264–296. [Google Scholar] [CrossRef]
- Niet, T.; Arianpoo, N.; Kuling, K.; Wright, A.S. Increasing the Reliability of Energy System Scenarios with Integrated Modelling: A Review. Environ. Res. Lett. 2022, 17, 043006. [Google Scholar] [CrossRef]
- Keppo, I.; Butnar, I.; Bauer, N.; Caspani, M.; Edelenbosch, O.; Emmerling, J.; Fragkos, P.; Guivarch, C.; Harmsen, M.; Lefèvre, J.; et al. Exploring the Possibility Space: Taking Stock of the Diverse Capabilities and Gaps in Integrated Assessment Models. Environ. Res. Lett. 2021, 16, 053006. [Google Scholar] [CrossRef]
- Fujimori, S.; Wu, W.; Doelman, J.; Frank, S.; Hristov, J.; Kyle, P.; Sands, R.; van Zeist, W.-J.; Havlik, P.; Domínguez, I.P. Land-Based Climate Change Mitigation Measures Can Affect Agricultural Markets and Food Security. Nat. Food 2022, 3, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Dianellou, A.; Christakopoulos, T.; Caralis, G.; Kotroni, V.; Lagouvardos, K.; Zervos, A. Is the Large-Scale Development of Wind-PV with Hydro-Pumped Storage Economically Feasible in Greece? Appl. Sci. 2021, 11, 2368. [Google Scholar] [CrossRef]
- Koutsandreas, D.; Trachanas, G.; Pappis, I.; Nikas, A.; Doukas, H.; Psarras, J. A Multicriteria Modeling Approach for Evaluating Power Generation Scenarios under Uncertainty: The Case of Green Hydrogen in Greece. Available online: https://www.researchgate.net/profile/Diamantis-Koutsandreas/publication/368388357_A_multicriteria_modeling_approach_for_evaluating_power_generation_scenarios_under_uncertainty_The_case_of_green_hydrogen_in_Greece/links/63e5233fc002331f7266daa3/A-multicriteria-modeling-approach-for-evaluating-power-generation-scenarios-under-uncertainty-The-case-of-green-hydrogen-in-Greece.pdf (accessed on 31 July 2023).
- Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, M.; et al. OSeMOSYS: The Open Source Energy Modeling System. An Introduction to Its Ethos, Structure and Development. Energy Policy 2011, 39, 5850–5870. [Google Scholar] [CrossRef]
- Hellenic Ministry of Environment and Energy. National Energy and Climate Plan; Hellenic Ministry of Environment and Energy: Athens, Greece, 2019; Available online: https://energy.ec.europa.eu/system/files/2020-03/el_final_necp_main_en_0.pdf (accessed on 31 July 2023).
- European Commission. EU Reference Scenario 2020; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Carlsson, J.; Fortes, M.; de Marco, G.; Giuntoli, J.; Jakubcionis, M.; Jäger-Waldau, A.; Lacal-Arantegui, R.; Lazarou, S.; Magagna, D.; Moles, C. ETRI 2014—Energy Technology Reference Indicator Projections for 2010–2050; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- International Energy Agency. IEA World Energy Outlook 2021; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Hirth, L.; Mühlenpfordt, J.; Bulkeley, M. The ENTSO-E Transparency Platform–A Review of Europe’s Most Ambitious Electricity Data Platform. Appl. Energy 2018, 225, 1054–1067. [Google Scholar] [CrossRef]
- Jordaan, S.M.; Heath, G.A.; Macknick, J.; Bush, B.W.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.; Marceau, D. Understanding the Life Cycle Surface Land Requirements of Natural Gas-Fired Electricity. Nat. Energy 2017, 2, 804–812. [Google Scholar] [CrossRef]
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef]
- United Nations Statistics Division. Energy Statistics. Available online: https://unstats.un.org/unsd/energystats/pubs/balance/ (accessed on 31 July 2023).
- Makhorin, A. GNU Linear Programming Kit; Moscow Aviation Institute: Moscow, Russia, 2001; p. 38. [Google Scholar]
- Hertel, T.; Tsigas, M. Structure of the GTAP Model. In Global Trade Analysis: Modeling and Applications; Cambridge University Press: Cambridge, MA, USA, 1997; pp. 9–71. [Google Scholar]
- Aguiar, A.; Chepeliev, M.; Corong, E.; van der Mensbrugghe, D. The Global Trade Analysis Project (GTAP) Data Base: Version 11. J. Glob. Econ. Anal. 2022, 7. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O. The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Rogelj, J.; Popp, A.; Calvin, K.V.; Luderer, G.; Emmerling, J.; Gernaat, D.; Fujimori, S.; Strefler, J.; Hasegawa, T.; Marangoni, G. Scenarios towards Limiting Global Mean Temperature Increase below 1.5 C. Nat. Clim. Chang. 2018, 8, 325–332. [Google Scholar] [CrossRef]
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; van Vuuren, D.P.; van den Berg, M.; Feng, L.; Klein, D. Global Emissions Pathways under Different Socioeconomic Scenarios for Use in CMIP6: A Dataset of Harmonized Emissions Trajectories through the End of the Century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef]
- Hertel, T. Global Trade Analysis: Modeling and Applications; Cambridge University Press: Cambridge, MA, USA, 1996; ISBN 9780521643740. [Google Scholar]
- Fouré, J.; Bénassy-Quéré, A.; Fontagné, L. The Great Shift: Macroeconomic Projections for the World Economy at the 2050 Horizon; SSRN: Rochester, NY, USA, 2012. [Google Scholar]
- Koutsandreas, D. Does Complexity Compensate for Accuracy in Annual Final Energy Demand Forecasting? A Multi-Methods Case Study in G7 Countries. In Proceedings of the 2023 19th International Conference on the European Energy Market (EEM), Lappeenranta, Finland, 6–8 June 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Burfisher, M.E. Introduction to Computable General Equilibrium Models, 2nd ed.; Cambridge University Press: Cambridge, MA, USA, 2017. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Senthilkumar, T. Five Decades of Evolution of Solar Photovoltaic Thermal (PVT) Technology—A Critical Insight on Review Articles. J. Clean. Prod. 2021, 322, 128997. [Google Scholar] [CrossRef]
- Gasparatos, A.; Doll, C.N.H.; Esteban, M.; Ahmed, A.; Olang, T.A. Renewable Energy and Biodiversity: Implications for Transitioning to a Green Economy. Renew. Sustain. Energy Rev. 2017, 70, 161–184. [Google Scholar] [CrossRef]
- Barragán-Escandón, A.; Jara-Nieves, D.; Romero-Fajardoc, I.; Zalamea-Leónesteban, E.F.; Serrano-Guerrero, X. Barriers to Renewable Energy Expansion: Ecuador as a Case Study. Energy Strategy Rev. 2022, 43, 100903. [Google Scholar] [CrossRef]
- Oryani, B.; Koo, Y.; Rezania, S.; Shafiee, A. Barriers to Renewable Energy Technologies Penetration: Perspective in Iran. Renew. Energy 2021, 174, 971–983. [Google Scholar] [CrossRef]
- Trachanas, G.P.; Mantzaris, N.; Marinakis, V.; Doukas, H. Multicriteria Evaluation of Power Generation Alternatives towards Lignite Phase-out: The Case of Ptolemaida V. Int. J. Multicriteria Decis. Mak. 2022, 9, 17–42. [Google Scholar] [CrossRef]
- Hache, E. Do Renewable Energies Improve Energy Security in the Long Run? Int. Econ. 2018, 156, 127–135. [Google Scholar] [CrossRef]
- Almutairi, K.; Thoma, G.; Durand-Morat, A. Ex-Ante Analysis of Economic, Social and Environmental Impacts of Large-Scale Renewable and Nuclear Energy Targets for Global Electricity Generation by 2030. Sustainability 2018, 10, 2884. [Google Scholar] [CrossRef]
- Kleanthis, N.; Koutsandreas, D.; Karakosta, C.; Doukas, H.; Flamos, A. Bridging the Transparency Gap in Energy Efficiency Financing by Co-Designing an Integrated Assessment Framework with Involved Actors. Energy Rep. 2022, 8, 9686–9699. [Google Scholar] [CrossRef]
- Scipioni, A.; Manzardo, A.; Ren, J. Hydrogen Economy: Processes, Supply Chain, Life Cycle Analysis and Energy Transition for Sustainability; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 0323995438. [Google Scholar]
- Koutsandreas, D.; Kleanthis, N.; Flamos, A.; Karakosta, C.; Doukas, H. Risks and Mitigation Strategies in Energy Efficiency Financing: A Systematic Literature Review. Energy Rep. 2022, 8, 1789–1802. [Google Scholar] [CrossRef]
- Hellenic Ministry of Environment and Energy. Long-Term Strategy for 2050. Available online: https://ypen.gov.gr/wp-content/uploads/2020/11/lts_gr_el.pdf (accessed on 31 July 2023).
Technology | Land Area Impact (LAI) Factors | |
---|---|---|
Capacity (km2/GW) | Energy (km2/GWh) | |
Geothermal power plant | 38.8 | - |
Biomass CHP power plant | 2 | 0.76 |
Coal power plant | 2 | 124.2 × 10−6 |
Diesel power plant | 2 | 144 × 10−6 |
Hydropower plant | 84.6 | - |
Natural gas power plant | 2 | 144 × 10−6 |
CSP | 30 | - |
Rooftop solar PV | - | - |
Commercial solar PV | 34.4 | - |
Wind onshore turbine | 368.3 | - |
Wind offshore turbine | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutsandreas, D. A Nexus-Based Impact Assessment of Rapid Transitions of the Power Sector: The Case of Greece. Electricity 2023, 4, 256-276. https://doi.org/10.3390/electricity4030016
Koutsandreas D. A Nexus-Based Impact Assessment of Rapid Transitions of the Power Sector: The Case of Greece. Electricity. 2023; 4(3):256-276. https://doi.org/10.3390/electricity4030016
Chicago/Turabian StyleKoutsandreas, Diamantis. 2023. "A Nexus-Based Impact Assessment of Rapid Transitions of the Power Sector: The Case of Greece" Electricity 4, no. 3: 256-276. https://doi.org/10.3390/electricity4030016
APA StyleKoutsandreas, D. (2023). A Nexus-Based Impact Assessment of Rapid Transitions of the Power Sector: The Case of Greece. Electricity, 4(3), 256-276. https://doi.org/10.3390/electricity4030016