Hydropower Plant Available Energy Forecasting Using Artificial Neural Network and Particle Swarm Optimization
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Preparation
2.3. Research Framework
2.4. Artificial Neural Networks (ANNs)
2.5. Particle Swarm Optimization (PSO)
2.6. Proposed PSO-ANN Hybrid Models
2.7. Prediction Error
3. Results and Discussion
3.1. Hyperparameter Determination
3.2. Results of the Proposed Approach
3.3. Training Results
3.4. Comparison of PSO-ANN, ANN and NARX Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, Y.; Ahmadianfar, I.; Koucheksaraee, A.S.; Azarsa, R.; Scholz, M.; Yaseen, Z.M. An accelerated gradient-based optimization development for multi-reservoir hydropower systems optimization. Energy Rep. 2021, 7, 7854–7877. [Google Scholar] [CrossRef]
- Long, Y.; Wang, H.; Jiang, C.; Ling, S. Seasonal inflow forecasts using gridded precipitation and soil moisture information: Implications for reservoir operation. Water Resour. 2019, 33, 3743–3757. [Google Scholar] [CrossRef]
- Li, F.; Ma, G.; Chen, S.; Huang, W. An ensemble modeling approach to forecast daily reservoir inflow using bidirectional long and short-term memory (Bi-LSTM), variational mode decomposition (VMD), and energy entropy method. Water Resour. Manag. 2021, 35, 2941–2963. [Google Scholar] [CrossRef]
- Rajesh, M.; Sachdeva, A.; Pansari, S.V.; Srivastav, A.; Rehana, S. Improving short-range reservoir inflow forecasts with machine learning model combination. Water Manag. 2022, 37, 75–90. [Google Scholar] [CrossRef]
- Yu, J.; Chang, W.-S.; Dong, Y. Building energy prediction models and related uncertainties: A Review. Buildings 2022, 12, 1284. [Google Scholar] [CrossRef]
- Khorram, S.; Jehbez, N. A hybrid CNN-LSTM approach for monthly reservoir inflow forecasting. Water Resour. Manag. 2023, 37, 4097–4121. [Google Scholar] [CrossRef]
- Saab, S.M.; Othman, F.; Tan, C.G.; Allawi, M.F.; Sherif, M.; El-Shafie, A. Utilizing deep learning machine for inflow forecasting in two different environment regions: A case study of a tropical and semi-arid region. Appl. Water Sci. 2022, 12, 272. [Google Scholar] [CrossRef]
- Latif, S.D.; Ahmed, A.N. A review of deep learning and machine learning techniques for hydrological inflow forecasting. Environ. Dev. Sustain. 2023, 25, 12189–12216. [Google Scholar] [CrossRef]
- Awan, J.A.; Bae, D.H. Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall forecasts. Water Resour. Manag. 2014, 28, 1185–1199. [Google Scholar] [CrossRef]
- Chang, F.J.; Lo, Y.C.; Chen, P.A.; Chang, L.C.; Shieh, M.C. Multi-step-ahead reservoir inflow forecasting by artificial intelligence techniques. In Smart Innovation System and Technology; Springer: Cham, Switzerland, 2015; Volume 30, pp. 235–249. [Google Scholar] [CrossRef]
- Chiamsathit, C.; Adeloye, A.J.; Soundharajan, B.S. Inflow forecasting using artificial neural networks for reservoir operation. Hydrol. Sci. 2019, 373, 209–214. [Google Scholar] [CrossRef]
- Babaei, M.; Moeini, R.; Ehsanzadeh, E. Artificial neural network and support vector machine models for inflow prediction of dam reservoir (Case study: Zayandehroud dam reservoir). Water Resour. Manag. 2019, 33, 2203–2218. [Google Scholar] [CrossRef]
- Noorbeh, P.; Roozbahani, A.; Moghaddam, H.K. Annual and monthly dam inflow prediction using Bayesian networks. Water Resour. Manag. 2020, 34, 2933–2951. [Google Scholar] [CrossRef]
- Hadiyan, P.P.; Moeini, R.; Ehsanzadeh, E.; Karvanpour, M. Trend analysis of water inflow into the dam reservoirs under future conditions predicted by dynamic NAR and NARX models. Water Resour. Manag. 2022, 36, 2703–2723. [Google Scholar] [CrossRef]
- Hanoon, M.S.; Ahmed, A.N.; Razzaq, A.; Oudah, A.Y.; Alkhayyat, A.; Huang, Y.F.; Kumar, P.; El-Shafi, A. Prediction of hydropower generation via machine learning algorithms at three Gorges dam, China. Hydropower Gener. 2022, 14, 1019–1914. [Google Scholar]
- Fallah, S.N.; Deo, R.C.; Shojafar, M.; Conti, M.; Shamshirband, S. Computational intelligence approaches for energy load forecasting in smart energy management grids: State of the art, future challenges, and research directions. Smart Grid 2018, 11, 596. [Google Scholar] [CrossRef]
- Moeeni, H.; Bonakdari, H.; Ebtehaj, I. Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach. Earth Syst. Sci. 2017, 18, 126. [Google Scholar] [CrossRef]
- Qi, Y.; Zhou, Z.; Yang, L.; Quan, Y.; Miao, Q. A decomposition-ensemble learning model based on LSTM neural network for daily reservoir inflow forecasting. Water Resour. Manag. 2019, 33, 4123–4139. [Google Scholar] [CrossRef]
- Feizi, H.; Apaydin, H.; Sattari, M.T.; Colak, M.S.; Sibtain, M. Improving reservoir inflow prediction via the rolling window and deep learning-based multi-model approach: A case study from Ermenek dam, Turkey. Stoch. Environ. Reserv. Risk Assess. 2022, 36, 3149–3169. [Google Scholar] [CrossRef]
- Ghazali, M.; Honar, T.; Nikoo, M.R. A fusion-based neural network methodology for monthly reservoir inflow prediction using MODIS products. Hydrol. Sci. 2019, 63, 2076–2096. [Google Scholar] [CrossRef]
- Bayat, N.; Park, J.H. Particle swarm optimization-based demand response using artificial neural network-based load prediction. In Proceedings of the North American Power Symposium (NAPS), Salt Lake City, UT, USA, 9–11 October 2022. [Google Scholar] [CrossRef]
- Pornnapa, P.; Paskorn, C.; Chuchoke, A. Water level prediction using artificial neural network with particle swarm optimization model. In Proceedings of the 2017 5th International Conference on Information and Communication Technology (ICoIC7), Melaka, Malaysia, 17–19 May 2017. [Google Scholar] [CrossRef]
- Rosli, N.S.; Ibrahim, R.; Ismail, I. Neural network model with particle swarm optimization for prediction in gas metering system. In Proceedings of the 2016 6th International Conference on Intelligent and Advanced Systems, Kuala Lumpur, Malaysia, 15–17 August 2016. [Google Scholar] [CrossRef]
- Hamada, M.; Hassan, M. Artificial neural networks and particle swarm optimization algorithms for preference prediction in multi-criteria recommender systems. Informatics 2018, 5, 25. [Google Scholar] [CrossRef]
- Fadlallah, S.O.; Anderson, T.N.; Nates, R.J. Artificial neural network–particle swarm optimization (ANN-PSO) approach for behaviour prediction and structural optimization of lightweight sandwich composite heliostats. Informatics 2021, 46, 12721–12742. [Google Scholar] [CrossRef]
- Seguini, M.; Boutchicha, D.; Nedjar, D. Crack prediction in pipeline using ANN-PSO based on numerical and experimental modal analysis. Smart Struct. Syst. 2021, 27, 507–523. [Google Scholar] [CrossRef]
- Lu, H.; Wu, J.; Ruan, Y.; Qian, F.; Meng, H.; Gao, Y.; Xu, T. A multi-source transfer learning model based on LSTM and domain adaptation for building energy prediction. Int. J. Electr. Power Energy Syst. 2023, 149, 109024. [Google Scholar] [CrossRef]
- Moayed, F.A.; Shell, R.L. Application of artificial neural network models in occupational safety and health utilizing ordinal variables. Occup. Hyg. 2021, 55, 132–142. [Google Scholar] [CrossRef]
- Tzeng, F.Y.; Ma, K.L. Opening the black box|data driven visualization of neural networks. Comput. Sci. 2005. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Neural networks in materials science. ISIJ Int. 1999, 39, 966–979. [Google Scholar] [CrossRef]
- Shami, T.M.; Alswaitti, M.; El-Saleh, A.A.; Al-Tashi, Q. Particle swarm optimization: A comprehensive survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- Wang, R.; Hao, K.; Chen, L.; Wang, T.; Jiang, C. A novel hybrid particle swarm optimization using adaptive strategy. Inf. Sci. 2021, 579, 231–250. [Google Scholar] [CrossRef]
- Semero, Y.K.; Zheng, D.; Zhang, J. A PSO-ANFIS based hybrid approach for short term PV power prediction in microgrids. Electr. Power Compon. Syst. 2018, 46, 95–103. [Google Scholar] [CrossRef]
- Kennedy, J. The behavior of particles. Volitionary Program 2005, 1447, 4104–4109. [Google Scholar] [CrossRef]
- Sharma, D.K.; Hota, H.S.; Brown, K.; Handa, R. Integration of genetic algorithm with artificial neural network for stock market forecasting. Eng. Manag. 2021, 13, 828–841. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Design Feature | Specification |
---|---|
Original Weir Dam (run-of-river type): | |
Concrete gravity-free overflow Weir: | 268 × 27 m (L × H) |
Spillway radial gates | 2 |
Head pond full supply level | 400 masl |
Two concrete-lined headrace tunnels length | 5289 m and 5496 m |
Installed capacity | 2 × 110 MW (+220 MW) |
NG Dam (storage type): | |
Concrete gravity dam | 480 × 65 m (L × H) |
Reservoir full supply level | 455 masl |
Max actual storage volume | 2430 MCM |
Spillway radial gates | 5 |
Installed capacity | 2 × 30 MW |
Model Scenario | Input Combinations | Output |
---|---|---|
SC1 | R(t), I(t − 1) | |
SC2 | R(t), R(t − 1), I(t − 1), I(t − 2) | E(t) |
SC3 | R(t), R(t − 1), I(t − 1), I(t − 2), I(t − 3) | |
SC4 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2) | |
SC5 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2), I(t − 3) |
Model Scenarios | Model Input Combinations | Model Output | Different Models | Model Structures | r | RMSE | RE |
---|---|---|---|---|---|---|---|
PA1 | R(t), I(t − 1) | E(t) | PSO-ANN | (2,30,1) | 0.951 | 38.168 | 8.261 |
PA2 | R(t), R(t − 1), I(t − 1), I(t − 2) | E(t) | PSO-ANN | (4,30,1) | 0.968 | 33.261 | 18.459 |
PA3 | R(t), R(t − 1), I(t − 1), I(t − 2), I(t − 3) | E(t) | PSO-ANN | (5,30,1) | 0.973 | 22.994 | 1.038 |
PA4 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2) | E(t) | PSO-ANN | (5,30,1) | 0.942 | 32.924 | 7.847 |
PA5 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2), I(t − 3) | E(t) | PSO-ANN | (6,30,1) | 0.930 | 34.354 | 3.662 |
Model Scenarios | Model Input Combinations | Model Output | Different Models | Model Structures | r | RMSE | RE |
---|---|---|---|---|---|---|---|
PA1 | R(t), I(t − 1) | E(t) | PSO-ANN | (2,30,1) | 0.905 | 44.925 | 15.059 |
PA2 | R(t), R(t − 1), I(t − 1), I(t − 2) | E(t) | PSO-ANN | (4,30,1) | 0.965 | 30.668 | 5.832 |
PA3 | R(t), R(t − 1), I(t − 1), I(t − 2), I(t − 3) | E(t) | PSO-ANN | (5,30,1) | 0.966 | 24.846 | 2.853 |
PA4 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2) | E(t) | PSO-ANN | (5,30,1) | 0.930 | 36.757 | 7.928 |
PA5 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2), I(t − 3) | E(t) | PSO-ANN | (6,30,1) | 0.956 | 27.934 | 3.001 |
Model Scenarios | Model Input Combinations | Model Output | Different Models | Model Structures | r | RMSE | RE |
---|---|---|---|---|---|---|---|
PA1 | R(t), I(t − 1) | E(t) | PSO-ANN | (2,30,1) | 0.951 | 38.168 | 8.261 |
PA2 | R(t), R(t − 1), I(t − 1), I(t − 2) | E(t) | PSO-ANN | (4,30,1) | 0.968 | 33.261 | 18.459 |
PA3 | R(t), R(t − 1), I(t − 1), I(t − 2), I(t − 3) | E(t) | PSO-ANN | (5,30,1) | 0.973 | 22.994 | 1.038 |
PA4 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2) | E(t) | PSO-ANN | (5,30,1) | 0.942 | 32.924 | 7.847 |
PA5 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2), I(t − 3) | E(t) | PSO-ANN | (6,30,1) | 0.930 | 34.354 | 3.662 |
A1 | R(t), I(t − 1) | E(t) | ANN | (2,30,1) | 0.894 | 43.444 | 18.178 |
A2 | R(t), R(t − 1), I(t − 1), I(t − 2) | E(t) | ANN | (4,30,1) | 0.900 | 55.512 | 41.521 |
A3 | R(t), R(t − 1), I(t − 1), I(t − 2),I(t − 3) | E(t) | ANN | (5,30,1) | 0.905 | 36.851 | 7.872 |
A4 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2) | E(t) | ANN | (5,30,1) | 0.821 | 76.032 | 27.723 |
A5 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2),I(t − 3) | E(t) | ANN | (6,30,1) | 0.775 | 55.106 | 10.051 |
N1 | R(t), I(t − 1) | E(t) | NARX | (2,30,1) | 0.894 | 40.182 | 3.030 |
N2 | R(t), R(t − 1), I(t − 1), I(t − 2) | E(t) | NARX | (4,30,1) | 0.832 | 55.317 | 16.462 |
N3 | R(t), R(t − 1), I(t − 1), I(t − 2),I(t − 3) | E(t) | NARX | (5,30,1) | 0.939 | 30.315 | 3.491 |
N4 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2) | E(t) | NARX | (5,30,1) | 0.796 | 51.605 | 7.338 |
N5 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2),I(t − 3) | E(t) | NARX | (6,30,1) | 0.844 | 45.577 | 4.250 |
Model Scenarios | Model Input Combinations | Model Output | Different Models | Model Structures | r | RMSE | RE |
---|---|---|---|---|---|---|---|
PA1 | R(t), I(t − 1) | E(t) | PSO-ANN | (2,30,1) | 0.905 | 44.925 | 15.059 |
PA2 | R(t), R(t − 1), I(t − 1), I(t − 2) | E(t) | PSO-ANN | (4,30,1) | 0.965 | 30.668 | 5.832 |
PA3 | R(t), R(t − 1), I(t − 1), I(t − 2), I(t − 3) | E(t) | PSO-ANN | (5,30,1) | 0.966 | 24.846 | 2.853 |
PA4 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2) | E(t) | PSO-ANN | (5,30,1) | 0.930 | 36.757 | 7.928 |
PA5 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2), I(t − 3) | E(t) | PSO-ANN | (6,30,1) | 0.956 | 27.934 | 3.001 |
A1 | R(t), I(t − 1) | E(t) | ANN | (2,30,1) | 0.909 | 44.268 | 24.058 |
A2 | R(t), R(t − 1), I(t − 1), I(t − 2) | E(t) | ANN | (4,30,1) | 0.873 | 51.048 | 28.574 |
A3 | R(t), R(t − 1), I(t − 1), I(t − 2), I(t − 3) | E(t) | ANN | (5,30,1) | 0.942 | 37.238 | 3.619 |
A4 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2) | E(t) | ANN | (5,30,1) | 0.910 | 55.710 | 25.550 |
A5 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2), I(t − 3) | E(t) | ANN | (6,30,1) | 0.821 | 57.602 | 11.466 |
N1 | R(t), I(t − 1) | E(t) | NARX | (2,30,1) | 0.905 | 43.566 | 14.521 |
N2 | R(t), R(t − 1), I(t − 1), I(t − 2) | E(t) | NARX | (4,30,1) | 0.922 | 39.719 | 5.724 |
N3 | R(t), R(t − 1), I(t − 1), I(t − 2), I(t − 3) | E(t) | NARX | (5,30,1) | 0.960 | 28.320 | 3.548 |
N4 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2) | E(t) | NARX | (5,30,1) | 0.943 | 34.179 | 6.101 |
N5 | R(t), R(t − 1), R(t − 2), I(t − 1), I(t − 2), I(t − 3) | E(t) | NARX | (6,30,1) | 0.911 | 39.604 | 7.106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaewarsa, S.; Kongpaseuth, V. Hydropower Plant Available Energy Forecasting Using Artificial Neural Network and Particle Swarm Optimization. Electricity 2024, 5, 751-769. https://doi.org/10.3390/electricity5040037
Kaewarsa S, Kongpaseuth V. Hydropower Plant Available Energy Forecasting Using Artificial Neural Network and Particle Swarm Optimization. Electricity. 2024; 5(4):751-769. https://doi.org/10.3390/electricity5040037
Chicago/Turabian StyleKaewarsa, Suriya, and Vanhkham Kongpaseuth. 2024. "Hydropower Plant Available Energy Forecasting Using Artificial Neural Network and Particle Swarm Optimization" Electricity 5, no. 4: 751-769. https://doi.org/10.3390/electricity5040037
APA StyleKaewarsa, S., & Kongpaseuth, V. (2024). Hydropower Plant Available Energy Forecasting Using Artificial Neural Network and Particle Swarm Optimization. Electricity, 5(4), 751-769. https://doi.org/10.3390/electricity5040037