Parameter Tuning Method for a Lattice Compensated Wireless Power Transfer System
Abstract
:1. Introduction
- A novel WPT system with a lattice resonant network is proposed. Compared with the traditional method, the additional DC–-DC converter can be reduced, thereby saving cost and weight.
- A T model for double-side lattice in the suggested system is developed, and its working mode and output characteristics are analyzed in detail.
- A new optimization technique was developed to design the lattice resonant network. To achieve output voltage regulation and ZVS during the charging process, ultimately extending battery life.
2. Proposed Topology and Analysis
2.1. Lattice Circuit Configuration and Modeling
2.2. Circuit Models of the Proposed Lattice Compensated WPT System
2.3. Basic Analysis of the Lattice Circuit
2.4. Double-Sided Lattice Network with Winding-Cross-Coupled Inductor
3. Sensitivity Analysis
3.1. Sensitivity to Switching Frequency
3.2. Sensitivity to Capacitor Size
3.3. Sensitivity to Resistance Value
4. Optimization
5. Experimental Setup
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laha, A.; Kalathy, A.; Pahlevani, M.; Jain, P. A comprehensive review on wireless power transfer systems for charging portable electronics. Eng 2023, 4, 1023–1057. [Google Scholar] [CrossRef]
- Patil, D.; McDonough, M.K.; Miller, J.M.; Fahimi, B.; Balsara, P.T. Wireless Power Transfer for Vehicular Applications: Overview and Challenges. IEEE Trans. Transp. Electrif. 2018, 4, 3–37. [Google Scholar] [CrossRef]
- He, H.; Sun, F.; Wang, Z.; Lin, C.; Zhang, C.; Xiong, R.; Deng, J.; Zhu, X.; Xie, P.; Zhang, S.; et al. China’s battery electric vehicles lead the world: Achievements in technology system architecture and technological breakthroughs. Green Energy Intell. Transp. 2022, 1, 100020. [Google Scholar] [CrossRef]
- Ojha, T.; Raptis, T.P.; Passarella, A.; Conti, M. Wireless power transfer with unmanned aerial vehicles: State of the art and open challenges. Pervasive Mob. Comput. 2023, 93, 101820. [Google Scholar] [CrossRef]
- Rong, C.; Duan, X.; Chen, M.; Wang, Q.; Yan, L.; Wang, H.; Xia, C.; He, X.; Zeng, Y.; Liao, Z. Critical Review of Recent Development of Wireless Power Transfer Technology for Unmanned Aerial Vehicles. IEEE Access 2023, 11, 132982–133003. [Google Scholar] [CrossRef]
- Rayan, B.A.; Subramaniam, U.; Balamurugan, S. Wireless power transfer in electric vehicles: A review on compensation topologies, coil structures, and safety aspects. Energies 2023, 16, 3084. [Google Scholar] [CrossRef]
- Sagar, A.; Kashyap, A.; Nasab, M.A.; Padmanaban, S.; Bertoluzzo, M.; Kumar, A.; Blaabjerg, F. A Comprehensive Review of the Recent Development of Wireless Power Transfer Technologies for Electric Vehicle Charging Systems. IEEE Access 2023, 11, 83703–83751. [Google Scholar] [CrossRef]
- Sampath, J.; Khan, A. Design, challenges, and trends of inductive power transfer couplers for electric vehicles: A review. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 6196–6218. [Google Scholar]
- Luo, Z.; Wei, X.; Pearce, M.G.S.; Covic, G.A. Multiobjective Optimization of Inductive Power Transfer Double-D Pads for Electric Vehicles. IEEE Trans. Power Electron. 2021, 36, 5135–5146. [Google Scholar] [CrossRef]
- Namadmalan, A.; Tavakoli, R.; Goetz, S.M.; Pantic, Z. Self-Aligning Capability of IPT Pads for High-Power Wireless EV Charging Stations. IEEE Trans. Ind. Appl. 2022, 58, 5593–5601. [Google Scholar] [CrossRef]
- Maciej, S.J. Analysis of the Wireless Power Transfer System Using a Finite Grid of Planar Circular Coils. Energies 2023, 16, 7651. [Google Scholar] [CrossRef]
- Rahulkumar, J.; Narayanamoorthi, R.; Vishnuram, P.; Balaji, C.; Gono, T.; Dockal, T.; Gono, R.; Krejci, P. A review on resonant inductive coupling pad design for wireless electric vehicle charging application. Energy Rep. 2023, 10, 2047–2079. [Google Scholar]
- Zhang, Y.; Pan, W.; Wang, H.; Shen, Z.; Wu, Y.; Dong, J.; Mao, X. Misalignment-tolerant dual-transmitter electric vehicle wireless charging system with reconfigurable topologies. IEEE Trans. Power Electron. 2022, 37, 8816–8819. [Google Scholar] [CrossRef]
- Dayerizadeh, A.; Lukic, S. Saturable inductors for superior reflexive field containment in inductive power transfer systems. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 3183–3188. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, B.; Kou, Z.; He, Z.; Cao, G.; Mai, R. Hybrid and Reconfigurable IPT Systems With High-Misalignment Tolerance for Constant-Current and Constant-Voltage Battery Charging. IEEE Trans. Power Electron. 2018, 33, 8259–8269. [Google Scholar] [CrossRef]
- Ramezani, A.; Narimani, M. Optimal Design of Fully Integrated Magnetic Structure for Wireless Charging of Electric Vehicles. IEEE Trans. Transp. Electrif. 2021, 7, 2114–2127. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, B.; Wu, L. Output power stabilization for wireless power transfer system employing primary-side-only control. IEEE Access 2020, 8, 63735–63747. [Google Scholar] [CrossRef]
- Ma, C.; Qu, X.; Liu, J.; Tan, L. A Novel Cascaded Buck Active Rectifier With Arbitrary Impedance Conversion Ratio for Inductive Power Transfer System. IEEE Trans. Transp. Electrif. 2024, 1. [Google Scholar] [CrossRef]
- Babaki, A.; Vaez-Zadeh, S.; Zakerian, A.; Covic, G.A. Variable-frequency retuned WPT system for power transfer and efficiency improvement in dynamic EV charging with fixed voltage characteristic. IEEE Trans. Energy Convers. 2021, 36, 2141–2151. [Google Scholar] [CrossRef]
- Feng, H.; Dayerizadeh, A.; Lukic, S.M. A Coupling-Insensitive X-Type IPT System for High Position Tolerance. IEEE Trans. Ind. Electron. 2021, 68, 6917–6926. [Google Scholar] [CrossRef]
- Corti, F.; Intravaia, M.; Reatti, A.; Grasso, F.; Grasso, E.; Cabrera, A.T. Component design procedure for LCC-S wireless power transfer systems based on genetic algorithms and sensitivity analysis. IET Power Electron. 2024, 17, 906–918. [Google Scholar] [CrossRef]
- Huang, L.; Hu, A.P.; Swain, A.K.; Su, Y. Z-Impedance Compensation for Wireless Power Transfer Based on Electric Field. IEEE Trans. Power Electron. 2016, 31, 7556–7563. [Google Scholar] [CrossRef]
- Oleksandr, H.; Roncero-Clemente, C. Resonant and Z-source multilevel inverters. In Multilevel Inverters; Academic Press: Cambridge, MA, USA, 2021; pp. 217–257. [Google Scholar]
- Chua, L.O.; Desoer, C.A.; Kuh, E.S. Linear and Nonlinear Circuits; McGraw Hill: New York, NY, USA, 1987. [Google Scholar]
- Alrubaie, A.J.; Salem, M.; Yahya, K.; Mohamed, M.; Kamarol, M. A comprehensive review of electric vehicle charging stations with solar photovoltaic system considering market, technical requirements, network implications, and future challenges. Sustainability 2023, 15, 8122. [Google Scholar] [CrossRef]
- Samuel, B.; Letchford, A.N. Non-convex mixed-integer nonlinear programming: A survey. Surv. Oper. Res. Manag. Sci. 2012, 17, 97–106. [Google Scholar]
- Fang, Z.; Cai, T.; Duan, S.; Chen, C. Optimal Design Methodology for LLC Resonant Converter in Battery Charging Applications Based on Time-Weighted Average Efficiency. IEEE Trans. Power Electron. 2015, 30, 5469–5483. [Google Scholar] [CrossRef]
- Li, Z.; Wei, G.; Dong, S.; Song, K.; Zhu, C. Constant current/voltage charging for the inductor–capacitor–inductor-series compensated wireless power transfer systems using primary-side electrical information. IET Power Electron. 2018, 11, 2302–2310. [Google Scholar] [CrossRef]
- Kavimandan, U.D.; Mahajan, S.M.; Van Neste, C.W. Analysis and Demonstration of a Dynamic ZVS Angle Control Using a Tuning Capacitor in a Wireless Power Transfer System. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1876–1890. [Google Scholar] [CrossRef]
- Tian, J.; Hu, A.P. A DC-Voltage-Controlled Variable Capacitor for Stabilizing the ZVS Frequency of a Resonant Converter for Wireless Power Transfer. IEEE Trans. Power Electron. 2017, 32, 2312–2318. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, H.; Hofmann, H.; Mi, C.C. A Double-Sided LC-Compensation Circuit for Loosely Coupled Capacitive Power Transfer. IEEE Trans. Power Electron. 2018, 33, 1633–1643. [Google Scholar] [CrossRef]
- Kim, D.-H.; Ahn, D. Self-Tuning LCC Inverter Using PWM-Controlled Switched Capacitor for Inductive Wireless Power Transfer. IEEE Trans. Ind. Electron. 2019, 66, 3983–3992. [Google Scholar] [CrossRef]
- Bozorgi, A.M.; Tavakoli, R.; Farasat, M. Unified Coil and Compensation Network Design for Improving Wireless Power Transfer Efficiency Over Wide Output Load Variation Ranges. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 2190–2200. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
DC power supply | 300 V | |
Resonant frequency | ||
Airgap between pads | d | 100 mm |
Primary coil inductance | ||
Secondary coil inductance | ||
Mutual inductance between main coil |
Parameter | Symbol | Value |
---|---|---|
DC power supply | 100 V | |
Resonant frequency | 84.3 kHz | |
Airgap between pads | d | 100 mm |
Primary coil inductance | ||
Secondary coil inductance | ||
Mutual inductance between main coil | ||
Mutual inductance of lattice compensation | ||
Inductance of lattice compensation | ||
Primary series compensation capacitor | 24 nF | |
Secondary series compensation capacitor | ||
Radius and height winding-cross-coupled |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esfahani, E.N.; Bhattacharya, I. Parameter Tuning Method for a Lattice Compensated Wireless Power Transfer System. Electricity 2024, 5, 895-915. https://doi.org/10.3390/electricity5040045
Esfahani EN, Bhattacharya I. Parameter Tuning Method for a Lattice Compensated Wireless Power Transfer System. Electricity. 2024; 5(4):895-915. https://doi.org/10.3390/electricity5040045
Chicago/Turabian StyleEsfahani, Ebrahim Nasr, and Indranil Bhattacharya. 2024. "Parameter Tuning Method for a Lattice Compensated Wireless Power Transfer System" Electricity 5, no. 4: 895-915. https://doi.org/10.3390/electricity5040045
APA StyleEsfahani, E. N., & Bhattacharya, I. (2024). Parameter Tuning Method for a Lattice Compensated Wireless Power Transfer System. Electricity, 5(4), 895-915. https://doi.org/10.3390/electricity5040045