Environmental and Social Risks to Biodiversity and Ecosystem Health—A Bottom-Up, Resource-Focused Assessment Framework
Abstract
:1. Introduction
- (1)
- 1st Framing–human greenhouse gas (GHG) emissions are the dominant human climate change forcings;
- (2)
- 2nd Framing–multiple anthropogenic forcings on climate, including GHG emissions, but also land-use changes, and aerosol pollution, along with natural climate forcings are all of first-order importance in affecting climate.
2. Terminology
3. Human Intervention in the Climate System
4. Top-Down Assessment of Vulnerabilities
5. Bottom-Up Assessment of Vulnerabilities
- (1)
- Why is this resource (e.g., ground water) important? How is it used (e.g., drinking, irrigation, industry)? To what stakeholders (e.g., agrobusinesses, ecological restoration) is it valuable?
- (2)
- What are the key environmental (e.g., rainfall change) and social variables (e.g., ground water pumping) that influence this resource?
- (3)
- What is the sensitivity of this resource to changes in each key variable at different time and space scales? In terms of time scales, this includes, but is not limited to, the sensitivity of the resource to environmental variations and changes on short (e.g., days), medium (e.g., seasons), and long (e.g., multidecadal) timescales. Space scales include habitats, landscapes, water basins and migratory ranges.
- (4)
- What changes (thresholds) in these key variables would have to occur (and at what scale) to result in a negative (or positive) response to this resource? What is the available natural (e.g., riparian zoning) and management (e.g., governance) tools for resistance and resilience to these changes?
- (5)
- What are the best estimates of the probabilities for these changes to occur (at different time scales; e.g., next 10 years; near 30 years etc.)? What tools are available to quantify the effect of these changes, and over what time frame? Can these estimates be skillfully predicted?
- (6)
- What actions (adaptation/mitigation) can be undertaken in order to minimize or overcome the negative consequences of these changes (or to optimize a positive response)?
- (7)
- What are specific recommendations for policymakers and other stakeholders in light of these assessments?
- (1)
- Expert synthesis of established knowledge, providing an opportunity to gain insights into the resistance and resilience of species and systems to a changing climate and, based on this, to devise strategies to reduce or cope with this risk.
- (2)
- Scenario (“what if”) planning gives us the means to not rely on climate and ecological model projections for systems whose complexities are inherently difficult to simulate; rather, scenario planning gives us a framework with which to envision consequences to biodiversity across a broad spectrum of plausible futures (including conceivable ‘surprises’).
- (3)
- A “no-regrets” goal (consider spectrum of plausible risks) guides us to implement climate-adaptive strategies which benefit current conservation needs by also decreasing species and system vulnerabilities to the suite of other threats.
- (4)
- Adaptive management (permit short-term adjustments as knowledge is gained) protocols give conservation programs the flexibility to adjust strategies to changing conditions and advances in our understanding.
6. Examples of Application of the Bottom-Up Paradigm to Assess Vulnerability
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sippel, S.; Zscheischler, J.; Reichstein, M. Ecosystem impacts of climate extremes crucially depend on the timing. Proc. Natl. Acad. Sci. USA 2016, 113, 5768–5770. [Google Scholar] [CrossRef] [Green Version]
- Felton, A.J.; Smith, M.D. Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160142. [Google Scholar] [CrossRef] [Green Version]
- Bauch, M.; Labbe, T.; Engel, A.; Seifert, P. A prequel to the Dantean Anomaly: The precipitation seesaw and droughts of 1302 to 1307 in Europe. Clim. Past 2020, 16, 2343–2358. [Google Scholar] [CrossRef]
- Dallmeyer, A.; Claussen, M.; Lorenz, S.; Shanahan, T. The end of the African humid period as seen by transient comprehensive Earth system model simulation of the last 8000 years. Clim. Past 2020, 16, 117–140. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A., Sr.; Beven, K.; Brasseur, G.; Calvert, J.; Chahine, M.; Dickerson, R.; Entekhabi, D.; Foufoula-Georgiou, E.; Gupta, H.; Gupta, V.; et al. Climate change: The need to consider human forcings besides greenhouse gases. Eos Trans. AGU 2009, 90, 413. [Google Scholar] [CrossRef]
- Andrews, T.; Forster, P.M. Energy budget constraints on historical radiative forcing. Nat. Clim. Chang. 2020, 10, 313–316. [Google Scholar] [CrossRef]
- Pielke, R.A., Sr. Earth system modelling—An integrated assessment tool for environmental studies. In Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling; Matsuno, T., Kida, H., Eds.; Terra Scientific Publishing, C.O.: Tokyo, Japan, 2001; pp. 311–337. [Google Scholar]
- McAlpine, C.A.; Ryan, J.G.; Seabrook, L.; Thomas, S.; Dargusch, P.J.; Syktus, J.I.; Pielke, R.A., Sr.; Etter, A.E.; Fearnside, P.M.; Laurance, W.F. More than CO2: A broader picture for managing climate change and variability to avoid ecosystem collapse. Curr. Opin. Environ. Sustain. 2010, 2, 334–336. [Google Scholar] [CrossRef]
- Hulme, M. You’ve Been Framed: Six New Ways to Understand Climate Change. 2011. Available online: https://theconversation.com/youve-been-framed-six-new-ways-to-understand-climate-change-2119 (accessed on 15 December 2020).
- Hulme, M. One Earth, many futures, no destination. One Earth 2020, 2. [Google Scholar] [CrossRef]
- Polasky, S.; Crépin, A.-S.; Biggs, R.; Carpenter, S.R.; Folke, C.; Peterson, G.; Scheffer, M.; Barrett, S.; Daily, G.; Ehrlich, P.; et al. Corridors of clarity: Four principles to overcome uncertainty paralysis in the Anthropocene. BioScience 2020, 70, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.E. Urban heat island effects on estimates of observed climate change. WIREs Clim. Chang. 2009, 1, 123–133. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef]
- Chapman, S.; Watson, J.E.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Pielke, R.A., Sr.; Adegoke, J.O.; Chase, T.N.; Marshall, C.H.; Matsui, T.; Niyogi, D. A new paradigm for assessing the role of agriculture in the climate system and in climate change. Agric. For. Meteor. 2007, 132, 234–254. [Google Scholar] [CrossRef]
- Pielke, R.A., Sr.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F.; Goldewijk, K.K.; Nair, U.; Betts, R.; Fall, S.; et al. Land use/land cover changes and climate: Modeling analysis and observational evidence. WIREs Clim. Chang. 2011, 2, 828–850. [Google Scholar] [CrossRef]
- Pielke, R.A., Sr.; Mahmood, R.; McAlpine, C. Land’s complex role in climate change. Phys. Today 2016, 69. [Google Scholar] [CrossRef] [Green Version]
- Marland, G.; Pielke, R.A., Sr.; Apps, M.; Avissar, R.; Betts, R.A.; Davis, K.J.; Frumhoff, P.C.; Jackson, S.T.; Joyce, L.; Kauppi, P.; et al. The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Clim. Policy 2003, 3, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Hossain, F.; Arnold, J.; Beighley, E.; Brown, C.; Burian, S.; Dallmeyer, J.; Madadgar, S.; Mitra, A.; Niyogi, D.; Pielke, R.A., Sr.; et al. Local-to-regional landscape drivers of extreme weather and climate: Implications for water infrastructure resilience. J. Hydrol. Eng. 2015, 20. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Lee, E.; Mankin, J.S. Seasonal tropospheric cooling in Northeast China associated with cropland expansion. Environ. Res. Lett. 2019, 15, 034032. [Google Scholar] [CrossRef]
- Liu, J.; Niyogi, D. Meta-analysis of urbanization impact on rainfall modification. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niyogi, D.; Subramanian, S.; Mohanty, U.C.; Kishtawal, C.M.; Ghosh, S.; Nair, U.S.; Ek, M.; Rajeevan, M. The impact of land cover and land use change on the Indian monsoon region hydroclimate. In Land-Atmospheric Research Applications in South and Southeast Asia; Springer: Berlin, Germany, 2018; pp. 553–575. [Google Scholar] [CrossRef]
- Chen, C.-J.; Chen, C.-C.; Lo, M.-H.; Juang, J.-Y.; Chang, C.-M. Central Taiwan’s hydroclimate in response to land use/cover change. Environ. Res. Lett. 2020, 15, 034015. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Ullah, A.; Khan, J.; Khan, F.; Shah, L. How vegetation spatially alters the response of precipitation and air temperature? Evidence from Pakistan. Asian J. Atmos. Environ. 2020, 14, 133–145. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- FEMA. The 100 Year Base Flood Standard and the Floodplain Management Executive Order: A Review Prepared for the Office of Management and Budget by the Federal Emergency Management Agency. 1983. Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a141959.pdf (accessed on 10 January 2021).
- National Research Council. Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties; Committee on Radiative Forcing Effects on Climate Change, Climate Research Committee, Board on Atmospheric Sciences and Climate, Division on Earth and Life Studies; The National Academies Press: Washington, DC, USA, 2005; p. 222. [CrossRef]
- Rial, J.A.; Pielke, R.A., Sr.; Beniston, M.; Claussen, M.; Canadell, J.; Cox, P.; Held, H.; de Noblet-Ducoudre, N.; Prinn, R.; Reynolds, J.; et al. Feedbacks and critical thresholds within the Earth’s climate system. Clim. Chang. 2004, 65, 11–38. [Google Scholar] [CrossRef] [Green Version]
- Sveinsson, O.G.B.; Salas, J.D.; Boes, D.C.; Pielke, R.A., Sr. Modeling of long-term variability of hydroclimatic processes. J. Hydrometeor. 2003, 4, 489–505. [Google Scholar] [CrossRef] [Green Version]
- Peters, D.P.C.; Pielke, R.A., Sr.; Bestelmeyer, B.T.; Allen, C.D.; Munson-McGee, S.; Havstad, K.M. Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proc. Natl. Acad. Sci. USA 2004, 101, 15130–15135. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A., Sr.; Wilby, R.; Niyogi, D.; Hossain, F.; Dairuku, K.; Adegoke, J.; Kallos, G.; Seastedt, T.; Suding, K. Dealing with Complexity and Extreme Events Using A Bottom-Up, Resource-Based Vulnerability Perspective. In Extreme Events and Natural Hazards: The Complexity Perspective; Sharma, A.S., Bunde, A., Dimri, V.P., Baker, D.N., Eds.; Copyright by the American Geophysical Union, Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2012; Volume 196. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2014; p. 1535. [Google Scholar]
- McKitrick, R.; Christy, J. Pervasive warm bias in CMIP6 tropospheric layers. Earth Space Sci. 2020, 7. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, L.; Zhang, L.; Liu, P.; Qin, S.; Liu, L.; Jing, Z. Quantifying the impacts of land-cover changes on global evapotranspiration based on the continuous remote sensing observations during 1982–2016. J. Hydrol. 2021. [Google Scholar] [CrossRef]
- Burgess, M.G.; Ritchie, J.; Shapland, J.; Pielke, R., Jr. IPCC baseline scenarios over-project CO2 emissions and economic growth. Environ. Res. Lett. 2020. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R., Jr. Economic ‘normalisation’ of disaster losses 1998–2020: A literature review and assessment. Environ. Hazards 2020, 20, 93–111. [Google Scholar] [CrossRef]
- Pielke, R., Jr.; Ritchie, J. Distorting the view of our climate future: The misuse and abuse of climate pathways and scenarios. Energy Res. Soc. Sci. 2021, 72, 101890. [Google Scholar] [CrossRef]
- Tabor, K.; Williams, J.W. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol. Appl. 2010, 20, 554–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, J.A.; Guentchev, G.S.; Liszewska, M.; Tan, P.N. Climate scenario development and applications for local/regional climate change impact assessments: An overview for the non-climate scientist: Part II: Considerations when using climate change scenarios. Geog. Compass 2011, 5, 301–328. [Google Scholar] [CrossRef]
- Reeves, M.C.; Moreno, A.L.; Bagne, K.E.; Running, S.W. Estimating climate change effects on net primary production of rangelands in the United States. Clim. Chang. 2014, 126, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Platts, P.J.; Omeny, P.; Marchant, R. AFRICLIM: High-resolution climate projections for ecological applications in Africa. Afr. J. Ecol. 2014, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Füssel, H.-M. Review and Quantitative Analysis of Indices of Climate Change Exposure, Adaptive Capacity, Sensitivity, and Impacts. Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/885101468164982209/development-and-climate-change-review-and-quantitative-analysis-of-indices-of-climate-change-exposure-adaptive-capacity-sensitivity-and-impacts (accessed on 7 July 2021).
- O’Brien, K.L.; Eriksen, S.; Nygaard, L.; Schjolden, A. Why different interpretations of vulnerability matter in climate change discourses. Clim. Policy 2007, 7, 73–88. [Google Scholar] [CrossRef]
- IPCC. Climate Change. 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Pielke, R.A., Sr.; Wilby, R.L. Regional climate downscaling—What’s the point? Eos Forum 2012, 93, 52–53. [Google Scholar] [CrossRef]
- U.S. National Assessment, Fourth National Climate Assessment. Volume II: Impacts, Risks and Adaptation in the United States. 2018. Available online: https://nca2018.globalchange.gov/ (accessed on 1 July 2021).
- Winkler, J.A.; Arritt, R.W.; Pryor, S.C. Climate Projections for the Midwest: Availability, Interpretation and Synthesis. In U.S. National Climate Assessment Midwest Technical Input Report; Winkler, J., Andresen, J., Hatfield, J., Bidwell, D., Brown, D., Coordinators; The Great Lakes Integrated Sciences and Assessment (GLISA) Center. 2012. Available online: http://glisa.msu.edu/docs/NCA/MTIT_Future.pdf (accessed on 1 July 2021).
- Byun, K.; Hamlet, A.F. Projected changes in future climate over the Midwest and Great Lakes region using downscaled CMIP5 ensembles. Int. J. Climatol. 2018, 38, e531–e553. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Byun, K.; Robeson, S.M.; Widhalm, M.; Baldwin, M. Impacts of climate change on the state of Indiana: Ensemble future projections based on statistical downscaling. Clim. Chang. 2020, 163, 1881–1895. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Pielke, R.A., Sr. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys. 2001, 39, 151–177. [Google Scholar] [CrossRef]
- Riehl, H.; Malkus, J.S. On the heat balance in the equatorial trough zone. Geophysica 1958, 6, 504–537. [Google Scholar]
- Riehl, H.; Simpson, J.M. The heat balance of the equatorial trough zone, revisited, Contrib. Atmos. Phys. 1979, 52, 287–305. [Google Scholar]
- Nobre, C.; Borma, L.D.S. ‘Tipping points’ for the Amazon forest. Curr. Opin. Environ. Sustain. 2009, 1, 28–36. [Google Scholar] [CrossRef]
- Pielke, R.A., Sr.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Niyogi, D.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. A 2002, 360, 1705–1719. [Google Scholar] [CrossRef] [PubMed]
- NASA Earth Observatory. Deep Freeze and Sea Breeze: Changing Land and Weather in Florida. 2005. Available online: https://earthobservatory.nasa.gov/features/DeepFreeze (accessed on 1 July 2021).
- Lawler, J.J.; Tear, T.H.; Pyke, C.; Shaw, M.R.; Gonzalez, P.; Kareiva, P.; Hansen, L.; Hannah, L.; Klausmeyer, K.; Aldous, A.; et al. Resource management in a changing and uncertain climate. Front. Ecol. Environ. 2010, 8, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Kittel, T.G.F.; Howard, S.; Horn, H.; Kittel, G.M.; Fairbarns, M.; Iachetti, P. A vulnerability-based strategy for incorporating climate change in regional conservation planning: Framework and case study for the British Columbia Central Interior. BC J. Ecosyst. Manag. 2011, 12, 7–35. [Google Scholar]
- Pielke, R.A., Sr.; de Guenni, L.B. Conclusions. In Vegetation, Water, Humans and the Climate, Global Change—The IGBP Series; Kabat, P., Claussen, M., Whitlock, S., Gash, J.H.C., de Guenni, L.B., Meybeck, M., Pielke, R., Vörösmarty, C.J., Hutjes, R.W.A., Lütkemeier, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 537–538. [Google Scholar] [CrossRef]
- Kittel, T.G.F. The vulnerability of biodiversity to rapid climate change. In Vulnerability of Ecosystems to Climate; Seastedt, T.R., Suding, K., Eds.; Elsevier Inc./Academic Press: Oxford, UK, 2013; Chapter 4.15, Volume 4, pp. 185–201. [Google Scholar] [CrossRef]
- Metzger, M.; Rounsevell, M.D.A.; Acosta-Michlik, L.; Leemans, R.; Schröter, D. The vulnerability of ecosystem services to land use change. Agric. Ecosyst. Environ. 2006, 114, 69–85. [Google Scholar] [CrossRef]
- Maxim, L.; Spangenberg, J.H.; O’Connor, M. An analysis of risks for biodiversity under the DPSIR framework. Ecol. Econ. 2009, 69, 12–23. [Google Scholar] [CrossRef]
- Binder, C.R.; Hinkel, J.; Bots, P.W.; Pahl-Wostl, C. Comparison of frameworks for analyzing social-ecological systems. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef] [Green Version]
- Seastedt, T.R.; Suding, K.N. Preface—Vulnerability of Ecosystems to Climate. Clim. Vulnerability 2013. [Google Scholar] [CrossRef]
- Kling, M.M.; Auer, M.; Comer, S.L.; Ackerly, P.J.; Hamilton, D.D. Multiple axes of ecological vulnerability to climate change. Glob. Chang. Biol. 2020, 26, 2798–2813. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, A. Points of view matter when assessing biodiversity vulnerability to environmental changes. Glob. Chang. Biol. 2020, 26, 2734–2736. [Google Scholar] [CrossRef] [PubMed]
- Pielke, R.A., Jr. The Honest Broker: Making Sense of Science in Policy and Politics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.; Edmonds, J.; Hibbard, K.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.T.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Kabat, P.; Claussen, M.; Whitlock, S.; Gash, J.H.C.; de Guenni, L.B.; Meybeck, M.; Pielke, R.; Vörösmarty, C.J.; Hutjes, R.W.A.; Lütkemeier, S. (Eds.) Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System; Global Change—The IGBP Series; Springer: Berlin, Germany, 2004; p. 566. [Google Scholar]
- Lovelock, J.; Margulis, L. Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis. Tellus 1974, 26, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.; (The Graduate Center of the City University of New York, New York, NY, USA). Personal Communication, 2000.
- Vörösmarty, C.; Green, P.; Salisbury, J.; Lammers, R. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobbs, G. The Role of Climate in Shaping Western Water Institutions. Water, Climate, and Uncertainty: Implications for Western Water Law, Policy, and Management, Natural Resources Law Center, University of Colorado, Boulder, CO, Summer Conference, 11–13 June 2003. p. 61. Available online: https://scholar.law.colorado.edu/water-climate-uncertainty/5 (accessed on 1 July 2021).
- Stohlgren, T.J.; Jarnevich, C.S. Risk assessment of invasive species. In Invasive Species Management: A Handbook of Principles and Techniques; Clout, M.N., Williams, P.A., Eds.; Oxford University Press: New York, NY, USA, 2009; pp. 19–35. [Google Scholar]
- Stohlgren, T.; Pyšek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.; Wilson, J.; Murray, B.R.; et al. Globalization Effects on Common Plant Species. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2013; Volume 3, pp. 700–706. [Google Scholar] [CrossRef]
- Barnett, D.T.; Jarnevich, C.; Chong, G.W.; Stohlgren, T.J.; Kumar, S.; Holcombe, T. Ecology and Space: A Case Study in Mapping Harmful Invasive Species. In Mapping Across Academia; Brunn, S., Dodge, M., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 63–81. [Google Scholar] [CrossRef]
- Wiens, J.J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 2016, 14, e2001104. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A., Sr. The distribution of spruce in west-central Virginia before lumbering. Castanea 1981, 46, 201–216. [Google Scholar]
- Romero-Lankao, P.; Qin, H.; Dickinson, K. Urban vulnerability to temperature-related hazards: A meta-analysis and meta-knowledge approach. Glob. Environ. Chang. 2012, 22, 670–683. [Google Scholar] [CrossRef]
- Cross, M.S.; Zavaleta, E.S.; Bachelet, D.; Brooks, M.; Enquist, C.; Fleishman, E.; Graumlich, L.; Groves, C.; Hannah, L.; Hansen, L.; et al. The Adaptation for Conservation Targets (ACT) framework: A tool for incorporating climate change into natural resource management. Environ. Manag. 2012, 50, 341–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, T.P.; Jackson, S.; House, J.I.; Prentice, I.C.; Mace, G.M. Beyond predictions: Biodiversity conservation in a changing climate. Science 2011, 332, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Rykała, W.; Dąbrowska, D. Risk assessment for groundwater in the region of municipal landfill systems in Tychy-Urbanowice (Southern Poland). Environ. Socio-Econ. Stud. 2020, 8, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Bonnema, M.; Hossain, F.; Nijssen, B.; Holt, J. Hydropower’s hidden transformation of rivers in the Mekong. Environ. Res. Lett. 2020, 15, 044017. [Google Scholar] [CrossRef] [Green Version]
- Arias, M.E.; Cochrane, T.A.; Piman, T.; Kummu, M.; Caruso, B.S.; Killeen, T.J. Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by water infrastructure development and climate change in the Mekong Basin. J. Environ. Manag. 2012, 112, 53–66. [Google Scholar] [CrossRef]
- Daly, K.; Ahmad, S.K.; Bonnema, M.; Beveridge, C.; Hossain, F.; Nijssen, B.; Holtgrieve, G. Recent warming of the Tonle Sap Lake, Cambodia: Implications for one of the world’s most productive inland fisheries. Lakes Reserv. 2020, 25, 133–142. [Google Scholar] [CrossRef]
- Sabo, J.L.; Ruhi, A.; Holtgrieve, G.W.; Elliott, V.; Arias, M.E.; Ngor, P.B.; Räsänen, T.A.; Nam, S. Designing river flows to improve food security futures in the Lower Mekong Basin. Science 2017, 358, eaao1053. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.W.; Krygier, J.T. Effects of clear-cutting on stream temperature. Water Resour. Res. 1970, 6, 1133–1139. [Google Scholar] [CrossRef]
- Cochrane, T.S.; Arias, M.E.; Piman, T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap System. Hydrol. Earth Syst. Sci. 2014, 18, 4529–4541. [Google Scholar] [CrossRef] [Green Version]
- Hossain, F.; Shum, C.K.; Turk, F.J.; Biancamaria, S.; Lee, H.; Limaye, A.; Hossain, M.; Shah-Newaz, S.; Mazumder, L.C.; Ahmed, T.; et al. Crossing the “Valley of Death”: Lessons learned from implementing an operational satellite-based flood forecasting system. Bull. Am. Meteor. Soc. 2014, 95, 1201–1207. [Google Scholar] [CrossRef]
- Sikder, S.; Hossain, F. Improving operational flood forecasting in monsoon climates with bias-corrected quantitative forecasting of precipitation. Int. J. River Basin Manag. 2018, 17, 411–421. [Google Scholar] [CrossRef]
- Biswas, N.K.; Hossain, F.; Bonnema, M.; Haque, A.; Biswas, R.; Bhuyan, A.; Hossain, A. A computationally efficient flashflood early warning system for a mountainous and transboundary river basin in Bangladesh. J. Hydroinform. 2020, 22, 1672–1692. [Google Scholar] [CrossRef]
- Niyogi, D.; Andresen, J. Useful to Usable (U2U): Transforming Climate Variability and Change Information for Cereal Crop Producers. In AGU Fall Meeting Abstracts; American Geophysical Union: San Francisco, CA, USA, 2011; p. GC13A-0960. [Google Scholar]
- Prokopy, L.S.; Carlton, J.S.; Haigh, T.; Lemos, M.C.; Mase, A.S.; Widhalm, M. Useful to usable: Developing usable climate science for agriculture. Clim. Risk Manag. 2017, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lang, T.; Rayner, G. Ecological public health: The 21st Century’s big idea? An essay by Tim Lang and Geof Rayner. BMJ 2012, 345, e5466. [Google Scholar] [CrossRef] [PubMed]
- Michlin, P. The Aral Sea disaster. Ann. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pielke, R.A., Sr.; Adegoke, J.; Hossain, F.; Niyogi, D. Environmental and Social Risks to Biodiversity and Ecosystem Health—A Bottom-Up, Resource-Focused Assessment Framework. Earth 2021, 2, 440-456. https://doi.org/10.3390/earth2030026
Pielke RA Sr., Adegoke J, Hossain F, Niyogi D. Environmental and Social Risks to Biodiversity and Ecosystem Health—A Bottom-Up, Resource-Focused Assessment Framework. Earth. 2021; 2(3):440-456. https://doi.org/10.3390/earth2030026
Chicago/Turabian StylePielke, Roger A., Sr., Jimmy Adegoke, Faisal Hossain, and Dev Niyogi. 2021. "Environmental and Social Risks to Biodiversity and Ecosystem Health—A Bottom-Up, Resource-Focused Assessment Framework" Earth 2, no. 3: 440-456. https://doi.org/10.3390/earth2030026
APA StylePielke, R. A., Sr., Adegoke, J., Hossain, F., & Niyogi, D. (2021). Environmental and Social Risks to Biodiversity and Ecosystem Health—A Bottom-Up, Resource-Focused Assessment Framework. Earth, 2(3), 440-456. https://doi.org/10.3390/earth2030026