Late Age- and Dose-Related Effects on the Proteome of Thyroid Tissue in Rats after 131I Exposure
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Rat Model and Experimental Design
2.2. Histological Evaluation of Rat Thyroid Tissue
2.3. Mass Spectrometry Analysis of Proteins
2.3.1. Protein Extraction, Digestion, and TMT-Labelling
2.3.2. Nanoliquid Chromatography Tandem Mass Spectrometry (nLC-MS/MS)
2.3.3. Proteomics Data Analysis
2.4. Statistical Analysis of Protein Expression Data
2.5. Ingenuity Pathway Analysis
3. Results
3.1. Group-Specific (Unique) Proteins
3.2. Age-Related Proteins
3.3. Dose-Related Proteins
3.4. IPA Analysis
3.5. Histological Evaluation of Rat Thyroid Tissue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nussey, S.; Whitehead, S. Endocrinology: An Integrated Approach; BIOS Scientific Publishers: Oxford, UK, 2001. [Google Scholar]
- Raymond, J.; LaFranchi, S.H. Fetal and neonatal thyroid function: Review and summary of significant new findings. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 1–7. [Google Scholar] [CrossRef]
- Mullur, R.; Liu, Y.Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014, 94, 355–382. [Google Scholar] [CrossRef]
- Srikantia, N.; Rishi, K.S.; Janaki, M.G.; Bilimagga, R.S.; Ponni, A.; Rajeev, A.G.; Kaushik, K.; Dharmalingam, M. How common is hypothyroidism after external radiotherapy to neck in head and neck cancer patients? Indian J. Med. Paediatr. Oncol. Off. J. Indian. Soc. Med. Paediatr. Oncol. 2011, 32, 143–148. [Google Scholar] [CrossRef]
- Holm, L.E. Thyroid cancer after exposure to radioiodine. Strahlenschutz Forsch. Prax. 1985, 25, 36–56. [Google Scholar] [PubMed]
- DeGroot, L.J. Effects of irradiation on the thyroid gland. Endocrinol. Metab. Clin. N. Am. 1993, 22, 607–615. [Google Scholar] [CrossRef]
- Inskip, P.D. Thyroid cancer after radiotherapy for childhood cancer. Med. Pediatr. Oncol. 2001, 36, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Robbins, J.; Schneider, A.B. Radioiodine-induced thyroid cancer: Studies in the aftermath of the accident at Chernobyl. Trends Endocrinol. Metab. 1998, 9, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Ron, E.; Lubin, J.H.; Shore, R.E.; Mabuchi, K.; Modan, B.; Pottern, L.M.; Schneider, A.B.; Tucker, M.A.; Boice, J.D., Jr. Thyroid cancer after exposure to external radiation: A pooled analysis of seven studies. Radiat. Res. 1995, 141, 259–277. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W. Chernobyl Thyroid Cancer: 30 Years of Follow-up Overview. Radiat. Prot. Dosimetry 2018, 182, 58–61. [Google Scholar] [CrossRef]
- International Atomic Energy Agency; Kinly, D., III (Eds.) Chernobyl’s Legacy: Health, Environmental and Socio-Economic Impacts and Recommendations to the Governments of Belarus, the Russian Federation and Ukraine; International Atomic Energy Agency (IAEA): Vienna, Austria, 2005. [Google Scholar]
- Zablotska, L.B.; Ron, E.; Rozhko, A.V.; Hatch, M.; Polyanskaya, O.N.; Brenner, A.V.; Lubin, J.; Romanov, G.N.; McConnell, R.J.; O’Kane, P.; et al. Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. Br. J. Cancer 2011, 104, 181–187. [Google Scholar] [CrossRef]
- Tronko, M.D.; Howe, G.R.; Bogdanova, T.I.; Bouville, A.C.; Epstein, O.V.; Brill, A.B.; Likhtarev, I.A.; Fink, D.J.; Markov, V.V.; Greenebaum, E.; et al. A cohort study of thyroid cancer and other thyroid diseases after the chornobyl accident: Thyroid cancer in Ukraine detected during first screening. J. Natl. Cancer Inst. 2006, 98, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Amundson, S.A.; Fornace, A.J., Jr. Gene expression profiles for monitoring radiation exposure. Radiat. Prot. Dosimetry 2001, 97, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Chin, R.I.; Wu, F.S.; Menda, Y.; Kim, H. Radiopharmaceuticals for Neuroendocrine Tumors. Semin. Radiat. Oncol. 2021, 31, 60–70. [Google Scholar] [CrossRef]
- Chaudhry, M.A. Biomarkers for human radiation exposure. J. Biomed. Sci. 2008, 15, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Rudqvist, N.; Spetz, J.; Schuler, E.; Parris, T.Z.; Langen, B.; Helou, K.; Forssell-Aronsson, E. Transcriptional response to 131I exposure of rat thyroid gland. PLoS ONE 2017, 12, e0171797. [Google Scholar] [CrossRef] [PubMed]
- Rudqvist, N.; Schuler, E.; Parris, T.Z.; Langen, B.; Helou, K.; Forssell-Aronsson, E. Dose-specific transcriptional responses in thyroid tissue in mice after (131)I administration. Nucl. Med. Biol. 2015, 42, 263–268. [Google Scholar] [CrossRef]
- Langen, B.; Rudqvist, N.; Parris, T.Z.; Helou, K.; Forssell-Aronsson, E. Circadian rhythm influences genome-wide transcriptional responses to (131)I in a tissue-specific manner in mice. EJNMMI Res. 2015, 5, 75. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.; Rudqvist, N.; Spetz, J.; Shubbar, E.; Parris, T.Z.; Langen, B.; Helou, K.; Forssell-Aronsson, E. Long-term transcriptomic and proteomic effects in Sprague Dawley rat thyroid and plasma after internal low dose 131I exposure. PLoS ONE 2020, 15, e0244098. [Google Scholar] [CrossRef] [PubMed]
- Spetz, J.; Rudqvist, N.; Forssell-Aronsson, E. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats. Cancer Biother. Radiopharm. 2013, 28, 657–664. [Google Scholar] [CrossRef]
- Rao-Rupanagudi, S.; Heywood, R.; Gopinath, C. Age-related changes in thyroid structure and function in Sprague-Dawley rats. Vet. Pathol. 1992, 29, 278–287. [Google Scholar] [CrossRef]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res 2019, 47, D442–D450. [Google Scholar] [CrossRef] [PubMed]
- Langen, B.; Rudqvist, N.; Parris, T.Z.; Schuler, E.; Helou, K.; Forssell-Aronsson, E. Comparative analysis of transcriptional gene regulation indicates similar physiologic response in mouse tissues at low absorbed doses from intravenously administered 211At. J. Nucl. Med. 2013, 54, 990–998. [Google Scholar] [CrossRef]
- Celestino, R.; Nome, T.; Pestana, A.; Hoff, A.M.; Goncalves, A.P.; Pereira, L.; Cavadas, B.; Eloy, C.; Bjoro, T.; Sobrinho-Simoes, M.; et al. CRABP1, C1QL1 and LCN2 are biomarkers of differentiated thyroid carcinoma, and predict extrathyroidal extension. BMC Cancer 2018, 18, 68. [Google Scholar] [CrossRef]
- Tai, J.; Wang, S.; Zhang, J.; Ge, W.; Liu, Y.; Li, X.; Liu, Y.; Deng, Z.; He, L.; Wang, G.; et al. Up-regulated lipocalin-2 in pediatric thyroid cancer correlated with poor clinical characteristics. Eur. Arch. Otorhinolaryngol. 2018, 275, 2823–2828. [Google Scholar] [CrossRef]
- Rosignolo, F.; Sponziello, M.; Durante, C.; Puppin, C.; Mio, C.; Baldan, F.; Di Loreto, C.; Russo, D.; Filetti, S.; Damante, G. Expression of PAX8 Target Genes in Papillary Thyroid Carcinoma. PLoS ONE 2016, 11, e0156658. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Xu, S.; Yan, J.; Zhang, C.; Qin, S.; Wang, X.; Li, N. The value of tumor markers in the diagnosis of papillary thyroid carcinoma alone and in combination. Pol. J. Pathol. 2014, 65, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, A.; Garmo, H.; Arthur, R.; Carroll, P.; Holmberg, L.; Hammar, N.; Jungner, I.; Malmstrom, H.; Lambe, M.; Walldius, G.; et al. Thyroid cancer risk in the Swedish AMORIS study: The role of inflammatory biomarkers in serum. Oncotarget 2018, 9, 774–782. [Google Scholar] [CrossRef]
- Fan, Y.; Shi, L.; Liu, Q.; Dong, R.; Zhang, Q.; Yang, S.; Fan, Y.; Yang, H.; Wu, P.; Yu, J.; et al. Discovery and identification of potential biomarkers of papillary thyroid carcinoma. Mol. Cancer 2009, 8, 79. [Google Scholar] [CrossRef]
- Mitteldorf, C.A.; de Sousa-Canavez, J.M.; Massumoto, C.; da Camara-Lopes, L.H. Fine-needle aspiration biopsy of thyroid nodules as a possible source for molecular studies: Analysis of RNA obtained from routine cases. Diagn. Cytopathol. 2008, 36, 899–903. [Google Scholar] [CrossRef]
- Weber, R.; Bertoni, A.P.; Bessestil, L.W.; Brasil, B.M.; Brum, L.S.; Furlanetto, T.W. Validation of reference genes for normalization gene expression in reverse transcription quantitative PCR in human normal thyroid and goiter tissue. Biomed. Res. Int. 2014, 2014, 198582. [Google Scholar] [CrossRef]
- Razavi, S.A.; Afsharpad, M.; Modarressi, M.H.; Zarkesh, M.; Yaghmaei, P.; Nasiri, S.; Tavangar, S.M.; Gholami, H.; Daneshafrooz, A.; Hedayati, M. Validation of Reference Genes for Normalization of Relative qRT-PCR Studies in Papillary Thyroid Carcinoma. Sci. Rep. 2019, 9, 15241. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.M.; Goudie, R.B. Nucleases and adenosine deaminase in malignant and non-malignant lesions of the human thyroid. Br. J. Cancer 1968, 22, 220–236. [Google Scholar] [CrossRef] [PubMed]
- Stephen, J.K.; Chen, K.M.; Merritt, J.; Chitale, D.; Divine, G.; Worsham, M.J. Methylation markers differentiate thyroid cancer from benign nodules. J. Endocrinol. Investig. 2018, 41, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Traina, G.; Cataldi, S.; Siccu, P.; Loreti, E.; Ferri, I.; Sidoni, A.; Codini, M.; Gizzi, C.; Sichetti, M.; Ambesi-Impiombato, F.S.; et al. Mouse Thyroid Gland Changes in Aging: Implication of Galectin-3 and Sphingomyelinase. Mediat. Inflamm. 2017, 2017, 8102170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.L.; Wang, J.M.; Wu, T.; Du, X.; Yan, J.; Du, Z.X.; Wang, H.Q. BAG5 promotes invasion of papillary thyroid cancer cells via upregulation of fibronectin 1 at the translational level. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118715. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Yoshida, H.; Uruno, T.; Nakano, K.; Takamura, Y.; Miya, A.; Kobayashi, K.; Yokozawa, T.; Matsuzuka, F.; Kuma, K.; et al. Tie-1 tyrosine kinase expression in human thyroid neoplasms. Histopathology 2004, 44, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, H.; Tabur, S.; Savas, E.; Ozkaya, M.; Aksoy, S.N.; Aksoy, N.; Akarsu, E. Evaluation of Serum S100A8/S100A9 Levels in Patients with Autoimmune Thyroid Diseases. Balkan Med. J. 2016, 33, 547–551. [Google Scholar] [CrossRef]
- Ito, Y.; Arai, K.; Nozawa, R.; Yoshida, H.; Hirokawa, M.; Fukushima, M.; Inoue, H.; Tomoda, C.; Kihara, M.; Higashiyama, T.; et al. S100A8 and S100A9 expression is a crucial factor for dedifferentiation in thyroid carcinoma. Anticancer. Res. 2009, 29, 4157–4161. [Google Scholar]
- Ito, Y.; Arai, K.; Ryushi; Nozawa; Yoshida, H.; Tomoda, C.; Uruno, T.; Miya, A.; Kobayashi, K.; Matsuzuka, F.; et al. S100A9 expression is significantly linked to dedifferentiation of thyroid carcinoma. Pathol. Res. Pract. 2005, 201, 551–556. [Google Scholar] [CrossRef]
- Rudqvist, N. Radiobiological Effects of the Thyroid Gland. PhD Thesis, University of Gothenburg, Gothenburg, Sweden, 2015. Available online: https://gupea.ub.gu.se/bitstream/2077/38006/1/gupea_2077_38006_1.pdf (accessed on 1 January 2020).
- Larsson, M.R.N.; Spetz, J.; Shubbar, E.; Parris, T.Z.; Langen, B.; Helou, K.; Forssell-Aronsson, E. Age related long-term response in rat thyroid tissue and plasma after internal low dose exposure to 131I 2021. Sci Rep. 2022, 12, 2107. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, F.; Coleman, M.A.; Jones, I.M.; Wyrobek, A.J. Candidate protein biodosimeters of human exposure to ionizing radiation. Int. J. Radiat. Biol. 2006, 82, 605–639. [Google Scholar] [CrossRef] [PubMed]
- Qatanani, M.; Zhang, J.; Moore, D.D. Role of the constitutive androstane receptor in xenobiotic-induced thyroid hormone metabolism. Endocrinology 2005, 146, 995–1002. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.F.; Wang, H.S.; Lee, C.L.; Liao, S.K. Roles of integrin-linked kinase in cell signaling and its perspectives as a therapeutic target. Gynecol. Minim. Invasive Ther. 2014, 3, 67–72. [Google Scholar] [CrossRef]
- Perdas, E.; Stawski, R.; Nowak, D.; Zubrzycka, M. The Role of miRNA in Papillary Thyroid Cancer in the Context of miRNA Let-7 Family. Int. J. Mol. Sci. 2016, 17, 909. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, T.T.; Walker, C.J.; Olkinuora, A.; Genutis, L.K.; O’Malley, M.; Wakely, P.E.; LaGuardia, L.; Koskenvuo, L.; Arola, J.; Lepisto, A.H.; et al. Thyroid Carcinomas That Occur in Familial Adenomatous Polyposis Patients Recurrently Harbor Somatic Variants in APC, BRAF, and KTM2D. Thyroid. 2020, 30, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Akaishi, J.; Kondo, T.; Sugino, K.; Ogimi, Y.; Masaki, C.; Hames, K.Y.; Yabuta, T.; Tomoda, C.; Suzuki, A.; Matsuzu, K.; et al. Cribriform-Morular Variant of Papillary Thyroid Carcinoma: Clinical and Pathological Features of 30 Cases. World J. Surg. 2018, 42, 3616–3623. [Google Scholar] [CrossRef]
- Cetta, F.; Montalto, G.; Gori, M.; Curia, M.C.; Cama, A.; Olschwang, S. Germline mutations of the APC gene in patients with familial adenomatous polyposis-associated thyroid carcinoma: Results from a European cooperative study. J. Clin. Endocrinol. Metab. 2000, 85, 286–292. [Google Scholar] [CrossRef]
- Li, C.; Peng, S.; Liu, X.; Han, C.; Wang, X.; Jin, T.; Liu, S.; Wang, W.; Xie, X.; He, X.; et al. Glycyrrhizin, a Direct HMGB1 Antagonist, Ameliorates Inflammatory Infiltration in a Model of Autoimmune Thyroiditis via Inhibition of TLR2-HMGB1 Signaling. Thyroid. 2017, 27, 722–731. [Google Scholar] [CrossRef]
- Peng, S.; Li, C.; Wang, X.; Liu, X.; Han, C.; Jin, T.; Liu, S.; Zhang, X.; Zhang, H.; He, X.; et al. Increased Toll-Like Receptors Activity and TLR Ligands in Patients with Autoimmune Thyroid Diseases. Front. Immunol. 2016, 7, 578. [Google Scholar] [CrossRef] [PubMed]
- Jacques, C.; Guillotin, D.; Fontaine, J.F.; Franc, B.; Mirebeau-Prunier, D.; Fleury, A.; Malthiery, Y.; Savagner, F. DNA microarray and miRNA analyses reinforce the classification of follicular thyroid tumors. J. Clin. Endocrinol. Metab. 2013, 98, E981–E989. [Google Scholar] [CrossRef]
- Rocchi, R.; Kimura, H.; Tzou, S.C.; Suzuki, K.; Rose, N.R.; Pinchera, A.; Ladenson, P.W.; Caturegli, P. Toll-like receptor-MyD88 and Fc receptor pathways of mast cells mediate the thyroid dysfunctions observed during nonthyroidal illness. Proc. Natl. Acad. Sci. USA 2007, 104, 6019–6024. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhao, Y. miR-451a inhibits cancer growth, epithelial-mesenchymal transition and induces apoptosis in papillary thyroid cancer by targeting PSMB8. J. Cell Mol. Med. 2019, 23, 8067–8075. [Google Scholar] [CrossRef] [PubMed]
- Lawnicka, H.; Motylewska, E.; Borkowska, M.; Kuzdak, K.; Siejka, A.; Swietoslawski, J.; Stepien, H.; Stepien, T. Elevated serum concentrations of IGF-1 and IGF-1R in patients with thyroid cancers. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub. 2020, 164, 77–83. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, S.; Zhang, X.; Liu, R.; Guan, H.; Zhang, H. Effects of insulin analogs and glucagon-like peptide-1 receptor agonists on proliferation and cellular energy metabolism in papillary thyroid cancer. Onco Targets Ther. 2017, 10, 5621–5631. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chang, A.; Zhou, W.; Zhao, H.; Zhuo, X. IGFBP3 as an indicator of lymph node metastasis and unfavorable prognosis for papillary thyroid carcinoma. Clin. Exp. Med. 2020, 20, 515–525. [Google Scholar] [CrossRef]
- Iglesias, P.; Bayon, C.; Mendez, J.; Gancedo, P.G.; Grande, C.; Diez, J.J. Serum insulin-like growth factor type 1, insulin-like growth factor-binding protein-1, and insulin-like growth factor-binding protein-3 concentrations in patients with thyroid dysfunction. Thyroid. 2001, 11, 1043–1048. [Google Scholar] [CrossRef]
- Lakatos, P.; Foldes, J.; Nagy, Z.; Takacs, I.; Speer, G.; Horvath, C.; Mohan, S.; Baylink, D.J.; Stern, P.H. Serum insulin-like growth factor-I, insulin-like growth factor binding proteins, and bone mineral content in hyperthyroidism. Thyroid. 2000, 10, 417–423. [Google Scholar] [CrossRef]
- Wescombe, L.; Lahooti, H.; Gopinath, B.; Wall, J.R. The cardiac calsequestrin gene (CASQ2) is up-regulated in the thyroid in patients with Graves’ ophthalmopathy—support for a role of autoimmunity against calsequestrin as the triggering event. Clin. Endocrinol. 2010, 73, 522–528. [Google Scholar] [CrossRef]
- Liang, W.; Sun, F. Identification of key genes of papillary thyroid cancer using integrated bioinformatics analysis. J. Endocrinol. InvestIG. 2018, 41, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yang, X.; Han, L.; Fan, Z.; Liu, B.; Zhang, C.; Lu, T. The prognostic potential of alpha-1 type I collagen expression in papillary thyroid cancer. Biochem. Biophys. Res. Commun. 2019, 515, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Suzuki, S.; Suzuki, S.; Shimura, H.; Saenko, V. Lessons from Fukushima: Latest Findings of Thyroid Cancer After the Fukushima Nuclear Power Plant Accident. Thyroid 2018, 28, 11–22. [Google Scholar] [CrossRef]
- Hayashida, N.; Imaizumi, M.; Shimura, H.; Okubo, N.; Asari, Y.; Nigawara, T.; Midorikawa, S.; Kotani, K.; Nakaji, S.; Otsuru, A.; et al. Thyroid ultrasound findings in children from three Japanese prefectures: Aomori, Yamanashi and Nagasaki. PLoS ONE 2013, 8, e83220. [Google Scholar] [CrossRef] [PubMed]
Young | Adult | ||||
---|---|---|---|---|---|
Protein | Log2 Ratio (Y50; Y500) | Protein | Log2 Ratio (A50; A500) | Protein | Log2 Ratio (A50; A500) |
FDPS | −0.60; −0.72 | AHNAK 1 (Fragment) | −0.66; −0.72 | LCN2 | 0.98; 0.69 |
GNPTAB | −0.63; −0.66 | ALDH1A7 | 1.3; 1.0 | LGALS5 | 0.89; 2.0 |
JAK1 | −0.63; −0.69 | APOBEC2 | 1.1; 0.88 | NCAPG2 | −1.1; −0.69 |
LSAMP | −0.59; −0.82 | APOD | −1.3; −0.81 | NHSL1 | −0.85; −1.1 |
MAOB | −0.61; −0.73 | ATPSCKMT | 0.81; 0.63 | NR2F2 | −0.93; −0.75 |
REEP6 | −0.58; −0.96 | BLOC1S6 | −0.82; −0.97 | PATZ1 | −0.64; −0.92 |
RGD1566265 | −0.60; −1.0 | BUD23 | −1.1; −1.4 | PDLIM4 | −0.73; −0.61 |
TBC1D10A | −0.66; −0.65 | CACNG1 | −1.8; −1.2 | PHKG2 | −0.59; −0.63 |
COX3 | −0.85; −1.1 | PISD | −0.68; −0.65 | ||
CSTF1 | −0.73; −0.74 | PLSCR1 | −0.86; −0.73 | ||
DHRS7B | −1.2; −0.61 | PPP1R10 | −0.96; −0.99 | ||
DNAH6 | −0.59; −1.6 | PRR33 | 1.9; 1.4 | ||
DPH6 | −1.4; −2.1 | PSMB8 | 1.8; 1.2 | ||
DVL1 | −0.62; −0.93 | RAC2 | −0.68; −0.61 | ||
ECI1 | −1.3; 0.90 | RB1 | −1.1; −0.62 | ||
FBXW17 | −0.65; −1.0 | RT1-A1B | 4.4; 1.4 | ||
FCGBP | −0.83; −0.78 | SNPH | −1.0; −0.82 | ||
FXYD1 | −0.99; −0.59 | TAP2 | −0.59; −1.0 | ||
HAT1 | −0.67; −0.63 | TAP2C | 1.5; 1.3 | ||
IGFBP6 | −0.69; −0.65 | TFE3 | −0.59; 0.99 | ||
IGHG | 0.67; 0.71 | Titin protein homolog (Fragment) | −1.3; −0.60 | ||
KRT1 | −1.0; −0.97 | TMEM47 | −0.63; −0.58 | ||
KRT10 | −1.1; −0.83 | TPCR12 | −0.94; −1.2 | ||
KRT16 | −1.6; −1.4 | TXLNB | −2.0; −1.9 | ||
KRT80 | −0.65; −0.70 | Uncharacterized protein | −1.9; −1.7 | ||
LAMC2 | −0.76; −0.69 |
50 kBq | 500 kBq | ||||
---|---|---|---|---|---|
Protein | Log2 Ratio (Young; Adult) | Protein | Log2 Ratio (Young; Adult) | Protein | Log2 Ratio (Young; Adult) |
BICD2 | −0.62; −0.59 | ABCC | −1.1; −0.90 | MEF2D | −0.67; −0.70 |
HABP4 | −0.61; −0.63 | ADGRG2 | −0.98; −0.78 | MOCOS | −1.1; −0.68 |
HBB-B1 | 0.65; −0.71 | ALDH1A2 | −0.65; −0.66 | MTM1 | −0.85; −0.88 |
NME3 | 0.60; 2.0 | BHMT | −2.7; −0.77 | MYL3 | 1.6; −0.73 |
PALM2 | 0.63; 0.70 | CDC40 | −1.1; −0.84 | PKP1 | 1.2; −1.1 |
CLCC1 | 0.84; 1.0 | PRKCZ | −0.79; −0.62 | ||
CNST | −0.62; −1.3 | PSMF1 | −0.95; −0.66 | ||
CPT2 | 1.1; 0.90 | RBM3 | −0.64; −1.86 | ||
CSRP3 | 0.99; −0.73 | SERPINB12 | 3.1; −0.64 | ||
DAB2 | −0.81; −0.74 | SLC25A15 | −0.89; −0.74 | ||
DNAJC17 | −0.60; −0.69 | SMPD3 | 1.5; −2.9 | ||
DUSP22 | −1.1; −0.69 | THBS4 | 0.72; −1.0 | ||
FLT4 | −0.88; −1.3 | TMEM106B | −1.2; −1.3 | ||
HEG1 | −0.72; −0.60 | TP53I11 | −0.77; −1.1 | ||
HP | 0.87; 0.74 | UBAC1 | −0.78; −0.82 | ||
IGSF8 | −0.89; −0.80 | VASN | −1.1; −0.78 | ||
LEAP2 | −1.0; −0.85 | WIZ | −0.67; −0.94 |
Ingenuity Canonical Pathway | p | z | Molecules |
---|---|---|---|
Y50 | |||
tRNA splicing | 1.7 × 10−2 | 2.0 | PDE10A, PDE1B, PDE5A, TSEN2 |
Stearate biosynthesis I (animals) | 2.5 × 10−2 | −2.0 | CYP2E1, DHCR24, GNPAT, SLC27A5 |
Superpathway of methionine degradation | 1.0 × 10−2 | −2.0 | BHMT, BHMT2, CTH, MAT1A |
Thyroid hormone metabolism II (via conjugation and/or degradation) | 7.4 × 10−3 | −2.0 | SULT1B1, UGT1A1, Ugt2b17, UGT2B28 |
Gluconeogenesis I | 1.4 × 10−3 | −2.0 | ALDOB, ENO3, FBP1, PGAM2 |
Glycolysis I | 2.6 × 10−4 | −2.2 | ALDOB, ENO3, FBP1, PGAM2, PKLR |
Bile acid biosynthesis, neutral pathway | 7.9 × 10−6 | −2.2 | AKR1D1, BAAT, CYP27A1, CYP3A4, SLC27A5 |
Xenobiotic metabolism PXR signaling pathway | 3.7 × 10−6 | −2.5 | ALDH1L1, ALDH1L2, ALDH8A1, CAMK2G, CYP2C19, CYP2C9, CYP3A4, GSTA5, MAOB, PPP1R11, PRKCE, SULT1B1, SULT1E1, UGT1A1, UGT2B28, UGT8 |
LPS/IL-1-mediated inhibition of RXR function | 1.2 × 10−7 | 2.6 | ACOX2, ALDH1L1, ALDH1L2, ALDH8A1, CPT2, CYP2A6 (includes others), CYP2C19, CYP2C9, CYP3A4, Cyp4a14, FABP1, ABP3, FMO4, GSTA5, HMGCS2, MAOB, MYD88, SLC27A5, SULT1B1, SULT1E1 |
Serotonin degradation | 4.3 × 10−4 | −2.6 | ADH1C, ADH4, MAOB, SULT1B1, UGT1A1, Ugt2b17, UGT2B28 |
Acetone degradation I (to methylglyoxal) | 4.0 × 10−6 | −2.6 | CYP2A6 (includes others), CYP2C18, CYP2C19, CYP2C9, CYP2E1, CYP2U1, CYP3A4 |
Bupropion degradation | 9.8 × 10−7 | −2.6 | CYP2A6 (includes others), CYP2C18, CYP2C19, CYP2C9, CYP2E1, CYP2U1, CYP3A4 |
Xenobiotic metabolism and the CAR signaling pathway | 1.4 × 10−5 | −2.8 | ALDH1L1, ALDH1L2, ALDH8A1, Cyp2b13/Cyp2b9, CYP2C19, CYP2C9, CYP3A4, FMO4, GSTA5, PRKCE, SULT1B1, SULT1E1, UGT1A1, UGT2B28, UGT8 |
Nicotine degradation II | 2.4 × 10−8 | −2.9 | AOX1, CYP2A6 (includes others), CYP2C18, CYP2C19, CYP2C9, CYP2E1, CYP2U1, CYP3A4, FMO4, UGT1A1, Ugt2b17, UGT2B28 |
Estrogen biosynthesis | 2.5 × 10−7 | −3,0 | CYP2A6 (includes others), CYP2C18, CYP2C19, CYP2C9, CYP2E1, CYP2U1, CYP3A4, HSD17B13, HSD17B2 |
Melatonin degradation I | 4.5 × 10−8 | −3.3 | CYP2A6 (includes others), CYP2C18, CYP2C19, CYP2C9, CYP2E1, CYP2U1, CYP3A4, SULT1B1, UGT1A1, Ugt2b17, UGT2B28 |
Nicotine degradation III | 4.5 × 10−8 | −3.3 | AOX1, CYP2A6 (includes others), CYP2C18, CYP2C19, CYP2C9, CYP2E1, CYP2U1, CYP3A4, UGT1A1, Ugt2b17, UGT2B28 |
Superpathway of melatonin degradation | 8.9 × 10−9 | −3.5 | CYP2A6 (includes others), CYP2C18, CYP2C19, CYP2C9, CYP2E1, CYP2U1, CYP3A4, MAOB, SULT1B1, UGT1A1, Ugt2b17, UGT2B28 |
Y500 | |||
Thyroid hormone metabolism II (via conjugation and/or degradation) | 2.0 × 10−3 | −2.0 | SULT1B1, UGT1A1, Ugt2b17, UGT2B28 |
Retinoate biosynthesis I | 1.8 × 10−3 | −2.0 | ADH1C, ADH4, ALDH8A1, Rdh7 |
Noradrenaline and adrenaline degradation | 1.6 × 10−3 | −2.0 | ADH1C, ADH4, ADHFE1, MAOB |
Superpathway of cholesterol biosynthesis | 1.2 × 10−3 | −2.0 | CYP51A1, DHCR24, FDPS, HMGCS2 |
bile acid biosynthesis, neutral pathway | 4.6 × 10−5 | −2.0 | AKR1D1, BAAT, CYP3A4, SLC27A5 |
citrulline biosynthesis | 8.3 × 10−6 | −2.0 | ARG1, GLS, LOC102724788/PRODH, OTC |
Superpathway of citrulline metabolism | 3.0 × 10−6 | −2.2 | ARG1, CPS1, GLS, LOC102724788/PRODH, OTC |
Estrogen biosynthesis | 7.9 × 10−13 | −2.3 | CYP2A6 (includes others), CYP2C18, CYP2C19, CYP2C9, CYP2E1, CYP2F1, CYP2S1, CYP2U1, CYP3A4, CYP51A1, HSD17B13, HSD17B2 |
Nicotine degradation II | 1.3 × 10−12 | −2.7 | Aox3, CYP2A6 (includes others), CYP2C18, CYP2C19, CYP2C9, CYP2E1, CYP2F1, CYP2S1, CYP2U1, CYP3A4, CYP51A1, UGT1A1, Ugt2b17, UGT2B28 |
Melatonin degradation I | 1.3 × 10−13 | −2.7 | CYP2A6 (includes others), CYP2C18, CYP2C19, CYP2C9, CYP2E1, CYP2F1, CYP2S1, CYP2U1, CYP3A4, CYP51A1, SULT1B1, UGT1A1, Ugt2b17, UGT2B28 |
Nicotine degradation III | 1.3 × 10−13 | −2.6 | Aox3, CYP2A6 (includes others), CYP2C18, CYP2C19, CYP2C9, CYP2E1, CYP2F1, CYP2S1, CYP2U1, CYP3A4, CYP51A1, UGT1A1, Ugt2b17, UGT2B28 |
Serotonin degradation | 4.6 × 10−6 | −2.8 | ADH1C, ADH4, ADHFE1, MAOB, SULT1B1, UGT1A1, Ugt2b17, UGT2B28 |
Superpathway of melatonin degradation | 2.0 × 10−14 | −2.87 | CYP2A6 (includes others), CYP2C18, CYP2C19, CYP2C9, CYP2E1, CYP2F1, CYP2S1, CYP2U1, CYP3A4, CYP51A1, MAOB, SULT1B1, UGT1A1, Ugt2b17, UGT2B28 |
Xenobiotic metabolism and the CAR signaling pathway | 1.3 × 10−4 | −3.3 | ALDH1L2, ALDH8A1, Cyp2b13/Cyp2b9, CYP2C19, CYP2C9, CYP3A4, GSTA5, SULT1B1, SULT1E1, UGT1A1, UGT2B28 |
Xenobiotic metabolism PXR signaling pathway | 5.9 × 10−6 | −3.6 | ALDH1L2, ALDH8A1, CAMK2A, CYP2C19, CYP2C9, CYP3A4, GSTA5, MAOB, Ppp1cc, SULT1B1, SULT1E1, UGT1A1, UGT2B28 |
A50 | |||
Xenobiotic metabolism and the CAR signaling pathway | 3.9 × 10−3 | 2.3 | ALDH8A1, GSTA1, GSTA5, MAP2K2, MAP2K5, SULT1B1, SULT2B1, UGT1A1, UGT2B28 |
A500 | |||
ILK signaling | 1.9 × 10−4 | −2.3 | ACTB, ACTN2, JUN, MYH1, MYH2, MYH3, MYH6, MYH7, MYH8, MYL1, MYL2, MYL3 |
Apelin cardiomyocyte signaling pathway | 2.6 × 10−3 | −2.6 | ATP2A1, MYL1, MYL2, MYL3, MYLPF, PLCL2, SLC9A2 |
Actin cytoskeleton signaling | 1.4 × 10−5 | −2.7 | ACTB, ACTN2, APC, MPRIP, MYH1, MYH2, MYH3, MYH6, MYH7, MYH8, MYL1, MYL2, MYL3, MYLPF, TTN |
Upstream Regulator | Molecule Type | p | z | Target Molecules in Dataset |
---|---|---|---|---|
Y500 | ||||
EFNA2 | Kinase | 4.5 × 10−3 | 2.0 | KRT13, KRT4, PKP1, TGM1 |
A50 | ||||
let-7 | MicroRNA | 2.3 × 10−2 | 2.2 | APC, BOP1, IGF1R, MYD88, STARD13 |
IGF1 | growth factor | 2.0 × 10−3 | −2.2 | GFAP, IGF1R, IGFBP3, PSMB8, SLC20A1 |
A500 | ||||
MYOCD | Transcription regulator | 7.8 × 10−10 | −2.1 | ACTN2, CASQ2, CNN1, COL1A1, HSPB7, MYH6, MYH7, MYL2, TNNC1, TNNI1, TTN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Druid, M.; Shubbar, E.; Spetz, J.; Parris, T.Z.; Langen, B.; Ytterbrink, C.; Berger, E.; Helou, K.; Forssell-Aronsson, E. Late Age- and Dose-Related Effects on the Proteome of Thyroid Tissue in Rats after 131I Exposure. Radiation 2024, 4, 149-166. https://doi.org/10.3390/radiation4020012
Druid M, Shubbar E, Spetz J, Parris TZ, Langen B, Ytterbrink C, Berger E, Helou K, Forssell-Aronsson E. Late Age- and Dose-Related Effects on the Proteome of Thyroid Tissue in Rats after 131I Exposure. Radiation. 2024; 4(2):149-166. https://doi.org/10.3390/radiation4020012
Chicago/Turabian StyleDruid, Malin, Emman Shubbar, Johan Spetz, Toshima Z. Parris, Britta Langen, Charlotte Ytterbrink, Evelin Berger, Khalil Helou, and Eva Forssell-Aronsson. 2024. "Late Age- and Dose-Related Effects on the Proteome of Thyroid Tissue in Rats after 131I Exposure" Radiation 4, no. 2: 149-166. https://doi.org/10.3390/radiation4020012
APA StyleDruid, M., Shubbar, E., Spetz, J., Parris, T. Z., Langen, B., Ytterbrink, C., Berger, E., Helou, K., & Forssell-Aronsson, E. (2024). Late Age- and Dose-Related Effects on the Proteome of Thyroid Tissue in Rats after 131I Exposure. Radiation, 4(2), 149-166. https://doi.org/10.3390/radiation4020012