Distributed Optical Fiber-Based Radiation Detection Using an Ultra-Low-Loss Optical Fiber
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Optical Time Domain Reflectometry Dosimetry
1.2. Choosing an Optical Fiber
1.3. A Regenerating Detector: The Vascade Optical Fiber
2. Materials and Methods
2.1. Optical Fiber under Test
2.2. Optical Time Domain Reflectometer in Use
2.3. Experimental Setup
2.4. Irradiation Procedure
2.5. RIA Calculation from an OTDR Trace
2.5.1. First Method: Derivative over Distance of the OTDR Trace
2.5.2. Second Method: Negative Slope
2.5.3. Third Method: SF Difference
3. Results and Discussions
3.1. OTDR Trace
3.2. RIA Estimation: Trace Derivative
3.3. RIA Kinetics
3.3.1. RIA Kinetics: Methods Performance Comparison
3.3.2. RIA Kinetics: Exposed Zones Comparison
3.4. Dose Rate Distributed Sensor Calibration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Di Francesca, D.; Brugger, M.; Vecchi, G.L.; Girard, S.; Morana, A.; Reghioua, I.; Alessi, A.; Hoehr, C.; Robin, T.; Kadi, Y. Qualification and Calibration of Single-Mode Phosphosilicate Optical Fiber for Dosimetry at CERN. J. Light. Technol. 2019, 37, 4643–4649. [Google Scholar] [CrossRef]
- Meyer, A.; Morana, A.; Weninger, L.; Balcon, N.; Melin, G.; Mekki, J.; Robin, T.; Champavère, A.; Saigné, F.; Boch, J.; et al. Toward an Embedded and Distributed Optical Fiber-Based Dosimeter for Space Applications. IEEE Trans. Nucl. Sci. 2023, 70, 583–589. [Google Scholar] [CrossRef]
- Di Francesca, D.; Toccafondo, I.; Li Vecchi, G.; Calderini, S.; Girard, S.; Alessi, A.; Ferraro, R.; Danzeca, S.; Kadi, Y.; Brugger, M. Distributed Optical Fiber Radiation Sensing in the Proton Synchrotron Booster at CERN. IEEE Trans. Nucl. Sci. 2018, 65, 1639–1644. [Google Scholar] [CrossRef]
- Toccafondo, I.; Marin, Y.E.; Guillermain, E.; Kuhnhenn, J.; Mekki, J.; Brugger, M.; Pasquale, F.D. Distributed Optical Fiber Radiation Sensing in a Mixed-Field Radiation Environment at CERN. J. Light. Technol. 2017, 35, 3303–3310. [Google Scholar] [CrossRef]
- Henschel, H.; Körfer, M.; Kuhnhenn, J.; Weinand, U.; Wulf, F. Fibre Optic Radiation Sensor Systems for Particle Accelerators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 526, 537–550. [Google Scholar] [CrossRef]
- Imamura, K.; Suzuki, T.; Gozen, T.; Tanaka, H.; Okamoto, S. Application of Nd3+-Doped Silica Fibers to Radiation Sensing Devices; Gillespie, C.H., Greenwell, R.A., Eds.; SPIE: Orlando, FL, USA, 1987; p. 62. [Google Scholar] [CrossRef]
- Anderson, D.R.; Johnson, L.; Bell, F.G. Early Developments. In Troubleshooting Optical Fiber Networks; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1–12. ISBN 978-0-12-058661-5. [Google Scholar]
- Healey, P. Instrumentation Principles for Optical Time Domain Reflectometry. J. Phys. E Sci. Instrum. 1986, 19, 334–341. [Google Scholar] [CrossRef]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-11901-4. [Google Scholar]
- Girard, S.; Kuhnhenn, J.; Gusarov, A.; Brichard, B.; Van Uffelen, M.; Ouerdane, Y.; Boukenter, A.; Marcandella, C. Radiation Effects on Silica-Based Optical Fibers: Recent Advances and Future Challenges. IEEE Trans. Nucl. Sci. 2013, 60, 2015–2036. [Google Scholar] [CrossRef]
- Griscom, D.L. Radiation Effects on Glass. In Encyclopedia of Materials Science and Engineering; Pergamon Press Ltd.: Oxford, UK, 1986; Volume 6. [Google Scholar]
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; De Michele, V.; Giacomazzi, L.; Agnello, S.; Francesca, D.D.; Morana, A.; Winkler, B.; et al. Overview of Radiation Induced Point Defects in Silica-Based Optical Fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Griscom, D.L. Optical Properties and Structure of Defects in Silica Glass. J. Ceram. Soc. Jpn. 1991, 99, 923–942. [Google Scholar] [CrossRef]
- Griscom, D.L. Nature of Defects and Defect Generation in Optical Glasses; Levy, P.W., Ed.; SPIE: Albuquerque, NM, USA, 1985; p. 38. [Google Scholar] [CrossRef]
- Griscom, D.L.; Friebele, E.J.; Long, K.J.; Fleming, J.W. Fundamental Defect Centers in Glass: Electron Spin Resonance and Optical Absorption Studies of Irradiated Phosphorus-doped Silica Glass and Optical Fibers. J. Appl. Phys. 1983, 54, 3743–3762. [Google Scholar] [CrossRef]
- Tomashuk, A.L.; Grekov, M.V.; Vasiliev, S.A.; Svetukhin, V.V. Fiber-Optic Dosimeter Based on Radiation-Induced Attenuation in P-Doped Fiber: Suppression of Post-Irradiation Fading by Using Two Working Wavelengths in Visible Range. Opt. Express 2014, 22, 16778. [Google Scholar] [CrossRef] [PubMed]
- Weninger, L.; Campanella, C.; Morana, A.; Fricano, F.; Marin, E.; Ouerdane, Y.; Boukenter, A.; Alia, R.G.; Girard, S. Calibration in the Visible and Infrared Domains of Multimode Phosphosilicate Optical Fibers for Dosimetry Applications. IEEE Trans. Nucl. Sci. 2023, 70, 1908–1916. [Google Scholar] [CrossRef]
- Li Vecchi, G.; Di Francesca, D.; Kadi, Y.; Ricci, D.; Brugger, M.; Campanella, C.; Alessi, A.; Ouerdane, Y.; Girard, S. In-Situ Regeneration of P-Doped Optical Fiber Dosimeter. Opt. Lett. 2020, 45, 5201. [Google Scholar] [CrossRef] [PubMed]
- Morana, A.; Campanella, C.; Vidalot, J.; De Michele, V.; Marin, E.; Reghioua, I.; Boukenter, A.; Ouerdane, Y.; Paillet, P.; Girard, S. Extreme Radiation Sensitivity of Ultra-Low Loss Pure-Silica-Core Optical Fibers at Low Dose Levels and Infrared Wavelengths. Sensors 2020, 20, 7254. [Google Scholar] [CrossRef] [PubMed]
- De Michele, V.; Marcandella, C.; Morana, A.; Campanella, C.; Vidalot, J.; Paillet, P.; Gaillardin, M.; Marin, E.; Ouerdane, Y.; Boukenter, A.; et al. Pulsed X-ray Radiation Response of Ultralow Loss Pure-Silica-Core Optical Fibers. Phys. Status Solidi A 2022, 219, 2100519. [Google Scholar] [CrossRef]
- Girard, S.; Morana, A.; De Michele, V.; Campanella, C.; Vidalot, J.; Marin, E.; Boukenter, A.; Paillet, P.; Ouerdane, Y. Radiation Responses of Ultra-Low Loss Pure-Silica-Core Optical Fibers in the Visible to Infrared Domains. Opt. Mater. X 2022, 16, 100191. [Google Scholar] [CrossRef]
- Campanella, C.; Morana, A.; De Michele, V.; Vidalot, J.; Marin, E.; Boukenter, A.; Ouerdane, Y.; Paillet, P.; Girard, S. Photobleaching Effect on the Radiation-Induced Attenuation of an Ultralow Loss Optical Fiber at Telecommunication Wavelengths. Phys. Status Solidi A 2022, 219, 2100518. [Google Scholar] [CrossRef]
- Weninger, L.; Morana, A.; Campanella, C.; Vidalot, J.; Marin, E.; Ouerdane, Y.; Boukenter, A.; Alia, R.G.; Girard, S. Radiation Monitoring with Radiosensitive Pure-Silica Core Ultra-Low Loss Optical Fiber. IEEE Trans. Nucl. Sci. 2024. [Google Scholar] [CrossRef]
- Kashaykin, P.F.; Tomashuk, A.L.; Vasiliev, S.A.; Ignatyev, A.D.; Shaimerdenov, A.A.; Ponkratov, Y.V.; Kulsartov, T.V.; Kenzhin, Y.A.; Gizatulin, S.K.; Zholdybayev, T.K.; et al. Radiation Resistance of Single-Mode Optical Fibres with View to in-Reactor Applications. Nucl. Mater. Energy 2021, 27, 100981. [Google Scholar] [CrossRef]
- Tomashuk, A.L.; Golant, K.M. Radiation-Resistant and Radiation-Sensitive Silica Optical Fibers; Dianov, E.M., Ed.; SPIE: Moscow, Russia, 2000; p. 188. [Google Scholar] [CrossRef]
- Tamura, Y.; Sakuma, H.; Morita, K.; Suzuki, M.; Yamamoto, Y.; Shimada, K.; Honma, Y.; Sohma, K.; Fujii, T.; Hasegawa, T. The First 0.14-dB/Km Loss Optical Fiber and Its Impact on Submarine Transmission. J. Light. Technol. 2018, 36, 44–49. [Google Scholar] [CrossRef]
- Griscom, D.L. Self-Trapped Holes in Pure-Silica Glass: A History of Their Discovery and Characterization and an Example of Their Critical Significance to Industry. J. Non-Cryst. Solids 2006, 352, 2601–2617. [Google Scholar] [CrossRef]
- Martinet, C.; Martinez, V.; Coussa, C.; Champagnon, B.; Tomozawa, M. Radial Distribution of the Fictive Temperature in Pure Silica Optical Fibers by Micro-Raman Spectroscopy. J. Appl. Phys. 2008, 103, 083506. [Google Scholar] [CrossRef]
- Wang, R.P.; Tai, N.; Saito, K.; Ikushima, A.J. Fluorine-Doping Concentration and Fictive Temperature Dependence of Self-Trapped Holes in SiO2 Glasses. J. Appl. Phys. 2005, 98, 023701. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Saito, K.; Ikushima, A.J. Fictive-Temperature-Dependence of Photoinduced Self-Trapped Holes in a—SiO2. Phys. Rev. B 2003, 68, 153204. [Google Scholar] [CrossRef]
- Lines, M.E. Can the Minimum Attenuation of Fused Silica Be Significantly Reduced by Small Compositional Variations? I. Alkali Metal Dopants. J. Non-Cryst. Solids 1994, 171, 209–218. [Google Scholar] [CrossRef]
- Agrawal, G.P. Fiber-Optic Communication Systems, 5th ed.; Wiley: Hoboken, NJ, USA, 2021; ISBN 978-1-119-73736-0. [Google Scholar]
- Vedda, A.; Chiodini, N.; Di Martino, D.; Fasoli, M.; Keffer, S.; Lauria, A.; Martini, M.; Moretti, F.; Spinolo, G.; Nikl, M.; et al. Ce3+-Doped Fibers for Remote Radiation Dosimetry. Appl. Phys. Lett. 2004, 85, 6356–6358. [Google Scholar] [CrossRef]
- Mones, E.; Veronese, I.; Vedda, A.; Loi, G.; Fasoli, M.; Moretti, F.; Chiodini, N.; Cannillo, B.; Brambilla, M. Ce-Doped Optical Fibre as Radioluminescent Dosimeter in Radiotherapy. Radiat. Meas. 2008, 43, 888–892. [Google Scholar] [CrossRef]
- Faustov, A.V.; Gusarov, A.V.; Mégret, P.; Wuilpart, M.; Zhukov, A.V.; Novikov, S.G.; Svetukhin, V.V.; Fotiadi, A.A. Application of Phosphate Doped Fibers for OFDR Dosimetry. Results Phys. 2016, 6, 86–87. [Google Scholar] [CrossRef]
- Corning, N. 14831 Corning Vascade Optical Fibers. Available online: http://www.tlc.unipr.it/cucinotta/cfa/datasheet_Vascade.pdf (accessed on 24 March 2024).
- VIAVI MTS-4000 V2. Available online: https://www.viavisolutions.com/fr-fr/produits/plateforme-mts-4000-v2#overview (accessed on 16 March 2024).
- Meyer, A.; Lambert, D.; Morana, A.; Paillet, P.; Boukenter, A.; Girard, S. Simulation and Optimization of Optical Fiber Irradiation with X-Rays at Different Energies. Radiation 2023, 3, 58–74. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weninger, L.; Morana, A.; Ouerdane, Y.; Marin, E.; Boukenter, A.; Girard, S. Distributed Optical Fiber-Based Radiation Detection Using an Ultra-Low-Loss Optical Fiber. Radiation 2024, 4, 167-182. https://doi.org/10.3390/radiation4020013
Weninger L, Morana A, Ouerdane Y, Marin E, Boukenter A, Girard S. Distributed Optical Fiber-Based Radiation Detection Using an Ultra-Low-Loss Optical Fiber. Radiation. 2024; 4(2):167-182. https://doi.org/10.3390/radiation4020013
Chicago/Turabian StyleWeninger, Luca, Adriana Morana, Youcef Ouerdane, Emmanuel Marin, Aziz Boukenter, and Sylvain Girard. 2024. "Distributed Optical Fiber-Based Radiation Detection Using an Ultra-Low-Loss Optical Fiber" Radiation 4, no. 2: 167-182. https://doi.org/10.3390/radiation4020013
APA StyleWeninger, L., Morana, A., Ouerdane, Y., Marin, E., Boukenter, A., & Girard, S. (2024). Distributed Optical Fiber-Based Radiation Detection Using an Ultra-Low-Loss Optical Fiber. Radiation, 4(2), 167-182. https://doi.org/10.3390/radiation4020013