Radiobiological Applications of Vibrational Spectroscopy: A Review of Analyses of Ionising Radiation Effects in Biology and Medicine
Abstract
:Simple Summary
Abstract
1. Introduction
- Investigation of the biomolecular response to radiation.
- Evaluation of intrinsic radiosensitivity and radioresistance.
- Prediction of radiobiological and clinical therapeutic responses.
1.1. Vibrational Spectroscopy—Theoretical Aspects
1.2. Raman and FTIR Instrumentation
1.3. Data Pre-Processing and Analysis Techniques
2. Historical Developments
2.1. Studies of Model Systems
2.2. Studies of Microorganisms
3. Studies on Subcellular, Cellular, Tissue, and Bone Systems In Vitro and Ex Vivo
3.1. Direct Irradiation Studies of Subcellular Systems
3.2. Direct Irradiation Studies of Cells
3.3. Direct Irradiation Studies on Tissues and Animal Model Studies
3.4. Non-Targeted Effects of Radiation (Bystander/Abscopal Effects)
3.5. Direct Irradiation Studies of Bone Systems
4. Translational and Human Studies
4.1. Early Translational Studies
4.2. Analysis of Radiation Response in Humans with Liquid Biopsy Components
4.3. Analysis of Radiotherapeutic Treatment Response Using Tissue Biopsies
4.4. Analysis of Radiotherapeutic Treatment Response Using Bone Biopsies
5. Discussion
6. Future Perspectives on the Applications of Vibrational Spectroscopy in Radiation Biology and Radiotherapeutic Practice
Author Contributions
Funding
Conflicts of Interest
References
- Edison, T.A. Effect of X-rays upon the eye. Nature 1896, 53, 421. [Google Scholar]
- Daniel, J. THE X-RAYS. Science 1896, 3, 562–563. [Google Scholar] [CrossRef] [PubMed]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; Van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef] [PubMed]
- Rothkamm, K.; Horn, S.; Scherthan, H.; Rößler, U.; De Amicis, A.; Barnard, S.; Kulka, U.; Lista, F.; Meineke, V.; Braselmann, H.; et al. Laboratory Intercomparison on the γ-H2AX Foci Assay. Radiat. Res. 2013, 180, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Viau, M.; Testard, I.; Shim, G.; Morat, L.; Normil, M.D.; Hempel, W.M.; Sabatier, L. Global quantification of γH2AX as a triage tool for the rapid estimation of received dose in the event of accidental radiation exposure. Mutat. Res. Toxicol. Environ. Mutagen. 2015, 793, 123–131. [Google Scholar] [CrossRef]
- Jung, J.; Seol, H.S.; Chang, S. The Generation and Application of Patient-Derived Xenograft Model for Cancer Research. Cancer Res. Treat. 2018, 50, 1–10. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, H. Next-generation sequencing in liquid biopsy: Cancer screening and early detection. Hum. Genom. 2019, 13, 34. [Google Scholar] [CrossRef]
- Meissner, G.W.; Grimm, J.B.; Johnston, R.M.; Sutcliffe, B.; Ng, J.; Jefferis, G.S.X.E.; Cachero, S.; Lavis, L.D.; Malkesman, O. Optimization of fluorophores for chemical tagging and immunohistochemistry of Drosophila neurons. PLoS ONE 2018, 13, e0200759. [Google Scholar] [CrossRef]
- Gullo, R.L.; Daimiel, I.; Morris, E.A.; Pinker, K. Combining molecular and imaging metrics in cancer: Radiogenomics. Insights Into Imaging 2020, 11, 1. [Google Scholar] [CrossRef]
- Rooprai, H.K.; Lawrence, P.; Keshavarz, S.; Yashod, P.; Gullan, R.W.; Selway, R.P.; Davies, D. DRAQ7 as an Alternative to MTT Assay for Measuring Viability of Glioma Cells Treated with Polyphenols. Anticancer Res. 2020, 40, 5427–5436. [Google Scholar] [CrossRef]
- Sicca, F.; Martinuzzi, D.; Montomoli, E.; Huckriede, A. Comparison of influenza-specific neutralizing antibody titers determined using different assay readouts and hemagglutination inhibition titers: Good correlation but poor agreement. Vaccine 2020, 38, 2527–2541. [Google Scholar] [CrossRef] [PubMed]
- Shui, L.; Ren, H.; Yang, X.; Li, J.; Chen, Z.; Yi, C.; Zhu, H.; Shui, P. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Front. Oncol. 2021, 10, 570465. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.S.; Fu, K.; Marks, J.; Silverman, S. Late effects of radiation therapy in the head and neck region. Int. J. Radiat. Oncol. 1995, 31, 1141–1164. [Google Scholar] [CrossRef] [PubMed]
- Magné, N.; Chargari, C.; MacDermed, D.; Conforti, R.; Védrine, L.; Spano, J.-P.; Khayat, D. Tomorrow’s targeted therapies in breast cancer patients: What is the risk for increased radiation-induced cardiac toxicity? Crit. Rev. Oncol. 2010, 76, 186–195. [Google Scholar] [CrossRef]
- Dreyfuss, A.D.; Velalopoulou, A.; Avgousti, H.; Bell, B.I.; Verginadis, I.I. Preclinical models of radiation-induced cardiac toxicity: Potential mechanisms and biomarkers. Front. Oncol. 2022, 12, 920867. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, C.; Song, B.; Zhang, S.; Chen, C.; Li, C.; Zhang, S. Tissue fibrosis induced by radiotherapy: Current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J. Transl. Med. 2023, 21, 708. [Google Scholar] [CrossRef]
- Nuryadi, E.; Mayang Permata, T.B.; Komatsu, S.; Oike, T.; & Nakano, T. Inter-assay precision of clonogenic assays for radiosensitivity in cancer cell line A549. Oncotarget 2018, 9, 13706–13712. [Google Scholar] [CrossRef]
- Guogytė, K.; Plieskienė, A.; Ladygienė, R.; Sevriukova, O.; Janušonis, V.; Žiliukas, J. Assessment of Correlation between Chromosomal Radiosensitivity of Peripheral Blood Lymphocytes after In vitro Irradiation and Normal Tissue Side Effects for Cancer Patients Undergoing Radiotherapy. Genome Integr. 2017, 8, 2. [Google Scholar] [CrossRef]
- Li, Z.; Li, N.; Shen, L.; Fu, J. Quantitative Proteomic Analysis Identifies MAPK15 as a Potential Regulator of Radioresistance in Nasopharyngeal Carcinoma Cells. Front. Oncol. 2018, 8, 548. [Google Scholar] [CrossRef]
- Wang, T.-M.; Shen, G.-P.; Chen, M.-Y.; Zhang, J.-B.; Sun, Y.; He, J.; Xue, W.-Q.; Li, X.-Z.; Huang, S.-Y.; Zheng, X.-H.; et al. Genome-Wide Association Study of Susceptibility Loci for Radiation-Induced Brain Injury. JNCI J. Natl. Cancer Inst. 2018, 111, 620–628. [Google Scholar] [CrossRef]
- Lobachevsky, P.N.; Bucknell, N.W.; Mason, J.; Russo, D.; Yin, X.; Selbie, L.; Ball, D.L.; Kron, T.; Hofman, M.; Siva, S.; et al. Monitoring DNA Damage and Repair in Peripheral Blood Mononuclear Cells of Lung Cancer Radiotherapy Patients. Cancers 2020, 12, 2517. [Google Scholar] [CrossRef] [PubMed]
- Feynman, R.P. QED: The Strange Theory of Light and Matter; Princeton University Press: Princeton, NJ, USA, 1985. [Google Scholar]
- Puppels, G.J.; de Mul, F.F.M.; Otto, C.; Greve, J.; Robert-Nicoud, M.; Arndt-Jovin, D.J.; Jovin, T.M. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 1990, 347, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Puppels, G.; Olminkhof, J.; Otto, C.; de Mul, F.; Greve, J. Laser irradiation and Raman spectroscopy of single living cells and chromosomes: Sample degradation occurs with 514.5 nm but not with 660 nm laser light. Exp. Cell Res. 1991, 195, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Puppels, G.; Garritsen, H.; Segers-Nolten, G.; de Mul, F.; Greve, J. Raman microspectroscopic approach to the study of human granulocytes. Biophys. J. 1991, 60, 1046–1056. [Google Scholar] [CrossRef]
- Mohamed, H.T.; Untereiner, V.; Sockalingum, G.D.; Brézillon, S. Implementation of infrared and Raman modalities for glycosaminoglycan characterization in complex systems. Glycoconj. J. 2017, 34, 309–323. [Google Scholar] [CrossRef]
- Kast, R.E.; Tucker, S.C.; Killian, K.; Trexler, M.; Honn, K.V.; Auner, G.W. Emerging technology: Applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev. 2014, 33, 673–693. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef]
- Hynes, A.; A Scott, D.; Man, A.; Singer, D.L.; Sowa, M.G.; Liu, K.-Z. Molecular mapping of periodontal tissues using infrared microspectroscopy. BMC Med. Imaging 2005, 5, 2. [Google Scholar] [CrossRef]
- Balan, V.; Mihai, C.-T.; Cojocaru, F.-D.; Uritu, C.-M.; Dodi, G.; Botezat, D.; Gardikiotis, I. Vibrational spectroscopy fingerprinting in medicine: From molecular to clinical practice. Materials 2019, 12, 2884. [Google Scholar] [CrossRef]
- Sato, S.; Sekine, R.; Kagoshima, H.; Kazama, K.; Kato, A.; Shiozawa, M.; Tanaka, J.-I. All-in-one Raman spectroscopy approach to diagnosis of colorectal cancer: Analysis of spectra in the fingerprint regions. J. Anus Rectum Colon 2019, 3, 84–90. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2015, 50, 46–111. [Google Scholar] [CrossRef]
- Cooper, J.B.; Marshall, S.; Jones, R.; Abdelkader, M.; Wise, K.L. Spatially compressed dual-wavelength excitation Raman spectrometer. Appl. Opt. 2014, 53, 3333–3340. [Google Scholar] [CrossRef]
- Lunter, D.; Klang, V.; Kocsis, D.; Varga-Medveczky, Z.; Berkó, S.; Erdő, F. Novel aspects of Raman spectroscopy in skin research. Exp. Dermatol. 2022, 31, 1311–1329. [Google Scholar] [CrossRef]
- Kerr, L.T.; Byrne, H.J.; Hennelly, B.M. Optimal choice of sample substrate and laser wavelength for Raman spectroscopic analysis of biological specimen. Anal. Methods 2015, 7, 5041–5052. [Google Scholar] [CrossRef]
- Hepting, M. Ordering Phenomena in Rare-Earth Nickelate Heterostructures; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Wang, J.; Jiang, Q.; Han, D. Multi-channel beam splitters based on gradient metasurfaces. Results Phys. 2021, 24, 104084. [Google Scholar] [CrossRef]
- Enciso-Martinez, A.; Van Der Pol, E.; Hau, C.M.; Nieuwland, R.; Van Leeuwen, T.G.; Terstappen, L.W.; Otto, C. Label-free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering. J. Extracell. Vesicles 2020, 9, 1730134. [Google Scholar] [CrossRef]
- Jones, R.R.; Hooper, D.C.; Zhang, L.; Wolverson, D.; Valev, V.K. Raman techniques: Fundamentals and frontiers. Nanoscale Res. Lett. 2019, 14, 231. [Google Scholar] [CrossRef]
- Yang, B.; Morris, M.D.; Owen, H. Holographic Notch Filter for Low-Wavenumber Stokes and Anti-Stokes Raman Spectroscopy. Appl. Spectrosc. 1991, 45, 1533–1536. [Google Scholar] [CrossRef]
- Elliott, A.D. Confocal Microscopy: Principles and Modern Practices. Curr. Protoc. Cytom. 2020, 92, e68. [Google Scholar] [CrossRef] [PubMed]
- Byrne, H.J.; Sockalingum, G.D.; Stone, N. Raman Microscopy: Complement or Competitor? In Biomedical Applications of Synchrotron Infrared Microspectroscopy; Williams, G., Fisher, S., Sule-Suso, J., Eds.; The Royal Society of Chemistry: London, UK, 2010; pp. 105–143. [Google Scholar] [CrossRef]
- Luhmann, T.; Robson, S.; Kyle, S.; Boehm, J. Close-Range Photogrammetry and 3D Imaging; Walter de Gruyter GmbH: Berlin, Germany, 2019. [Google Scholar]
- Giechaskiel, B.; Clairotte, M. Fourier Transform Infrared (FTIR) Spectroscopy for Measurements of Vehicle Exhaust Emissions: A Review. Appl. Sci. 2021, 11, 7416. [Google Scholar] [CrossRef]
- Gazi, E.; Baker, M.; Dwyer, J.; Lockyer, N.P.; Gardner, P.; Shanks, J.H.; Reeve, R.S.; Hart, C.A.; Clarke, N.W.; Brown, M.D. A correlation of FTIR spectra derived from prostate cancer biopsies with gleason grade and tumour stage. Eur. Urol. 2006, 50, 750–761. [Google Scholar] [CrossRef] [PubMed]
- ThermoFisher Scientific. Advanced FTIR Spectroscopy Principles, Experiments and Applications; ThermoFisher Scientific: Waltham, MA, USA, 2021. [Google Scholar]
- Hughes, C.; Isaacson, J.; Perry, A.; Sun, R.F.; Turner, J. Creating Superposition: The Beam Splitter. In Quantum Computing for the Quantum Curious; Springer International Publishing: Cham, Switzerland, 2021; pp. 17–28. [Google Scholar] [CrossRef]
- Duarte, F.J. Chapter 11—Spectrometry and Interferometry. In Tunable Laser Optics; Academic Press: San Diego, CA, USA, 2003; pp. 227–248. [Google Scholar] [CrossRef]
- Velasco, A.V.; Cheben, P.; Florjańczyk, M. Chapter 3—Spatial Heterodyne Fourier-Transform Waveguide Spectrometers. In Progress in Optics; Elsevier: Oxford, UK, 2014; pp. 159–208. [Google Scholar] [CrossRef]
- Newman, J. Physics of the Life Sciences; Springer Science & Business: Media, NY, USA, 2010. [Google Scholar]
- Herres, W.; Gronholz, J. Understanding FTIR Data Processing Part 1: Data Acquisition and Fourier Transformation 1; Bojker Analytische Messtechnik GmbH: Karlsruhe, Germany, 2007. [Google Scholar]
- Barton, B.; Thomson, J.; Diz, E.L.; Portela, R. Chemometrics for Raman Spectroscopy Harmonization. Appl. Spectrosc. 2022, 76, 1021–1041. [Google Scholar] [CrossRef] [PubMed]
- Bassan, P.; Kohler, A.; Martens, H.; Lee, J.; Byrne, H.J.; Dumas, P.; Gazi, E.; Brown, M.; Clarke, N.; Gardner, P. Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples. Analyst 2010, 135, 268–277. [Google Scholar] [CrossRef]
- Gil, E.M.; Cheburkanov, V.; Yakovlev, V.V. Denoising Raman spectra using a single layer convolutional model trained on simulated data. J. Raman Spectrosc. 2023, 54, 814–822. [Google Scholar] [CrossRef]
- Yue, X.; Wang, K.; Yan, H.; Park, J.G.; Liang, Z.; Zhang, C.; Wang, B.; Shi, J. Generalized Wavelet Shrinkage of Inline Raman Spectroscopy for Quality Monitoring of Continuous Manufacturing of Carbon Nanotube Buckypaper. IEEE Trans. Autom. Sci. Eng. 2016, 14, 196–207. [Google Scholar] [CrossRef]
- Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2015, 2, 8. [Google Scholar] [CrossRef]
- Kerr, L.T.; Domijan, K.; Cullen, I.; Hennelly, B.M. Applications of Raman spectroscopy to the urinary bladder for cancer diagnostics. Photon-Lasers Med. 2014, 3, 193–224. [Google Scholar] [CrossRef]
- Liu, D.; Hennelly, B.; O’Neill, L.; Byrne, H.J. Investigation of wavenumber calibration for Raman spectroscopy using a polymer standard. In Optical Sensing and Detection V. Optical Sensing and Detection; Berghmans, F., Mignani, A.G., Eds.; SPIE: Strasbourg, France, 2018. [Google Scholar]
- Dörfer, T.; Bocklitz, T.; Tarcea, N.; Schmitt, M.; Popp, J. Checking and Improving Calibration of Raman Spectra using Chemometric Approaches. Z. Phys. Chem. 2011, 225, 753–764. [Google Scholar] [CrossRef]
- Kerr, L.; Hennelly, B. A multivariate statistical investigation of background subtraction algorithms for Raman spectra of cytology samples recorded on glass slides. Chemom. Intell. Lab. Syst. 2016, 158, 61–68. [Google Scholar] [CrossRef]
- Geng, L.; Ma, M.; Wang, X.; Yu, W.; Jia, S.; Wang, H. Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor Time-Series NDVI Data Sets in the Heihe River Basin, China. Remote Sens. 2014, 6, 2024–2049. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.H.; Min, S.Y.; Byun, K.M.; Lee, S.Y. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy. J. Biomed. Opt. 2017, 22, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bruun, S.W.; Kohler, A.; Adt, I.; Sockalingum, G.D.; Manfait, M.; Martens, H. Correcting Attenuated Total Reflection—Fourier Transform Infrared Spectra for Water Vapor and Carbon Dioxide. Appl. Spectrosc. 2006, 60, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Troein, C.; Siregar, S.; De Beeck, M.O.; Peterson, C.; Tunlid, A.; Persson, P. OCTAVVS: A Graphical Toolbox for High-Throughput Preprocessing and Analysis of Vibrational Spectroscopy Imaging Data. Methods Protoc. 2020, 3, 34. [Google Scholar] [CrossRef]
- Bassan, P.; Byrne, H.J.; Lee, J.; Bonnier, F.; Clarke, C.; Dumas, P.; Gazi, E.; Brown, M.D.; Clarke, N.W.; Gardner, P. Reflection contributions to the dispersion artefact in FTIR spectra of single biological cells. Analyst 2009, 134, 1171–1175. [Google Scholar] [CrossRef]
- Stommel, M.; Wills, C. Clinical Research: Concepts and Principles for Advanced Practice Nurses; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004. [Google Scholar]
- Delac, K.; Grgic, M.; Bartlett, M. Recent Advances in Face Recognition; InTech: Vienna, Austria, 2008. [Google Scholar]
- Esbensen, K.H.; Guyot, D.; Westad, F.; Houmoller, L.P. Multivariate Data Analysis. In Practice: An Introduction to Multivariate Data Analysis and Experimental Design; Camo Software Inc.: Oslo, Norway, 2002. [Google Scholar]
- Song, W.; Wang, H.; Maguire, P.; Nibouche, O. Nearest clusters based partial least squares discriminant analysis for the classification of spectral data. Anal. Chim. Acta 2018, 1009, 27–38. [Google Scholar] [CrossRef]
- Aminu, M.; Ahmad, N.A. Locality preserving partial least squares discriminant analysis for face recognition. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 153–164. [Google Scholar] [CrossRef]
- Ruiz-Perez, D.; Guan, H.; Madhivanan, P.; Mathee, K.; Narasimhan, G. So you think you can PLS-DA? BMC Bioinform. 2020, 21 (Suppl. S1), 2. [Google Scholar] [CrossRef]
- Meksiarun, P.; Aoki, P.H.B.; Van Nest, S.J.; Sobral-Filho, R.G.; Lum, J.J.; Brolo, A.G.; Jirasek, A. Breast cancer subtype specific biochemical responses to radiation. Analyst 2018, 143, 3850–3858. [Google Scholar] [CrossRef]
- Medipally, D.K.; Nguyen, T.N.Q.; Bryant, J.; Untereiner, V.; Sockalingum, G.D.; Cullen, D.; Noone, E.; Bradshaw, S.; Finn, M.; Dunne, M.; et al. Monitoring radiotherapeutic response in prostate cancer patients using high throughput ftir spectroscopy of liquid biopsies. Cancers 2019, 11, 925. [Google Scholar] [CrossRef] [PubMed]
- Cullen, D.; Bryant, J.; Maguire, A.; Medipally, D.; McClean, B.; Shields, L.; Noone, E.; Bradshaw, S.; Finn, M.; Dunne, M.; et al. Raman spectroscopy of lymphocytes for the identification of prostate cancer patients with late radiation toxicity following radiotherapy. Transl. Biophotonics 2020, 2, e201900035. [Google Scholar] [CrossRef]
- Surmacki, J.M. Monitoring the effect of therapeutic doses of gamma irradiation on medulloblastoma by Raman spectroscopy. Anal. Methods 2020, 12, 383–391. [Google Scholar] [CrossRef]
- Nguyen, T.N.Q.; Maguire, A.; Mooney, C.; Jackson, N.; Lynam-Lennon, N.; Weldon, V.; Muldoon, C.; Maguire, A.A.; O’Toole, D.; Ravi, N.; et al. Prediction of pathological response to neo-adjuvant chemoradiotherapy for oesophageal cancer using vibrational spectroscopy. Transl. Biophotonics 2021, 3, e202000014. [Google Scholar] [CrossRef]
- Ciobanu, C.; Mcnairn, C.; Nyiri, B.; Chauhan, V.; Subedi, S.; Murugkar, S. Exploring the use of Raman Spectroscopy and Covariate-Adjusted Multivariate Analysis for the Detection of Irradiated Blood. Radiat. Res. 2023, 199, 396–405. [Google Scholar] [CrossRef]
- Lasalvia, M.; Capozzi, V.; Perna, G. A Comparison of PCA-LDA and PLS-DA Techniques for Classification of Vibrational Spectra. Appl. Sci. 2022, 12, 5345. [Google Scholar] [CrossRef]
- Roman, M.; Wrobel, T.P.; Panek, A.; Efeoglu, E.; Wiltowska-Zuber, J.; Paluszkiewicz, C.; Byrne, H.J.; Kwiatek, W.M. Exploring subcellular responses of prostate cancer cells to X-ray exposure by Raman mapping. Sci. Rep. 2019, 9, 8715. [Google Scholar] [CrossRef]
- Meade, A.D.; Maguire, A.; Bryant, J.; Cullen, D.; Medipally, D.; White, L.; McClean, B.; Shields, L.; Armstrong, J.; Dunne, M.; et al. Prediction of DNA damage and G2 chromosomal radio-sensitivity ex vivo in peripheral blood mononuclear cells with label-free Raman micro-spectroscopy. Int. J. Radiat. Biol. 2019, 95, 44–53. [Google Scholar] [CrossRef]
- Roman, M.; Wrobel, T.P.; Panek, A.; Paluszkiewicz, C.; Kwiatek, W.M. Physicochemical damage and early-stage biological response to X-ray radiation studied in prostate cancer cells by Raman spectroscopy. J. Biophotonics 2020, 13, e202000252. [Google Scholar] [CrossRef]
- Roman, M.; Wrobel, T.P.; Panek, A.; Paluszkiewicz, C.; Kwiatek, W.M. Exploring subcellular responses of prostate cancer cells to clinical doses of X-rays by Raman microspectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119653. [Google Scholar] [CrossRef]
- Brereton, R.G.; Lloyd, G.R. Partial least squares discriminant analysis: Taking the magic away. J. Chemom. 2014, 28, 213–225. [Google Scholar] [CrossRef]
- Maguire, A.; Vegacarrascal, I.; White, L.; McClean, B.; Howe, O.; Lyng, F.M.; Meade, A.D. Analyses of Ionizing Radiation Effects In Vitro in Peripheral Blood Lymphocytes with Raman Spectroscopy. Radiat. Res. 2015, 183, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Qiu, S.; Yu, Y.; Chen, W.; Lin, H.; Lin, D.; Feng, S.; Chen, R. Assessment of the radiotherapy effect for nasopharyngeal cancer using plasma surface-enhanced Raman spectroscopy technology. Biomed. Opt. Express 2018, 9, 3413–3423. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, C.J.; de Pablo, J.G.; Tinkler-Hundal, E.; Wood, H.M.; Evans, S.D.; West, N.P. Developing a Raman spectroscopy-based tool to stratify patient response to pre-operative radiotherapy in rectal cancer. Analyst 2021, 146, 581–589. [Google Scholar] [CrossRef]
- Milligan, K.; Van Nest, S.J.; Deng, X.; Ali-Adeeb, R.; Shreeves, P.; Punch, S.; Costie, N.; Pavey, N.; Crook, J.M.; Berman, D.M.; et al. Raman spectroscopy and supervised learning as a potential tool to identify high-dose-rate-brachytherapy induced biochemical profiles of prostate cancer. J. Biophotonics 2022, 15, e202200121. [Google Scholar] [CrossRef]
- Paidi, S.K.; Diaz, P.M.; Dadgar, S.; Jenkins, S.V.; Quick, C.M.; Griffin, R.J.; Dings, R.P.; Rajaram, N.; Barman, I. Label-Free Raman Spectroscopy Reveals Signatures of Radiation Resistance in the Tumor Microenvironment. Cancer Res. 2019, 79, 2054–2064. [Google Scholar] [CrossRef]
- Marcus, M.A.; Corelli, J.C. Infrared Spectroscopy of the Photo- and Radiobiology of DNA Bases and Their Derivatives. Radiat. Res. 1974, 57, 20–37. [Google Scholar] [CrossRef]
- Verma, S.P. Low levels of irradiation modify lipid domains in model membranes: A laser raman study. Radiat. Res. 1986, 107, 183–193. [Google Scholar] [CrossRef]
- Verma, S.P.; Rastogi, A. Role of Proteins in Protection against Radiation-Induced Damage in Membranes. Radiat. Res. 1990, 122, 130–136. [Google Scholar] [CrossRef]
- Verma, S.P.; Sonwalkar, N. Structural Changes in Plasma Membranes Prepared from Irradiated Chinese Hamster V79 Cells as Revealed by Raman Spectroscopy. Radiat. Res. 1991, 126, 27–35. [Google Scholar] [CrossRef]
- Verma, S.; Singhal, A.; Sonwalkar, N. Ionizing radiation target groups of band 3 inserted into egg lecithin liposomes as determined by raman spectroscopy. Int. J. Radiat. Biol. 1993, 63, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Sailer, K.; Viaggi, S.; Nüsse, M. Kinetics of radiation- and cytochrome c-induced modifications in liposomes analysed by FT–Raman spectroscopy. Biochim. Biophys. Acta (BBA)-Biomembr. 1997, 1329, 259–268. [Google Scholar] [CrossRef]
- Kinder, C.Z.; Wessels, J.M.R. gamma-Irradiation and UV-C light-induced lipid peroxidation: A Fourier transform-infrared absorption spectroscopic study. Int. J. Radiat. Biol. 1997, 71, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Torreggiani, A.; Tamba, M.; Manco, I.; Faraone-Mennella, M.R.; Ferreri, C.; Chatgilialoglu, C. Radiation damage of lysozyme in a biomimetic model: Some insights by Raman spectroscopy. J. Mol. Struct. 2005, 744–747, 767–773. [Google Scholar] [CrossRef]
- Sailer, K. Radiation-induced structural modifications in dsDNA analysed by FT-Raman spectroscopy. Int. J. Radiat. Biol. 1996, 69, 601–613. [Google Scholar] [CrossRef]
- Synytsya, A.; Alexa, P.; de Boer, J.; Loewe, M.; Moosburger, M.; Würkner, M.; Volka, K. Raman spectroscopic study of calf thymus DNA: An effect of proton- and γ-irradiation. J. Raman Spectrosc. 2007, 38, 1406–1415. [Google Scholar] [CrossRef]
- Synytsya, A.; Alexa, P.; de Boer, J.; Loewe, M.; Moosburger, M.; Würkner, M.; Volka, K. Raman spectroscopic study of serum albumins: An effect of proton- and γ-irradiation. J. Raman Spectrosc. 2007, 38, 1646–1655. [Google Scholar] [CrossRef]
- Xue, J.; Du, G.; Wang, Y. Effect of MeV proton irradiation on bovine serum albumin molecule. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2006, 245, 318–321. [Google Scholar] [CrossRef]
- Dovbeshko, G.I.; Gridina, N.Y.; Kruglova, E.B.; Pashchuk, O.P. FTIR spectroscopy studies of nucleic acid damage. Talanta 2000, 53, 233–246. [Google Scholar] [CrossRef]
- McGeehan, J.E.; Carpentier, P.; Royant, A.; Bourgeois, D.; Ravelli, R.B.G. X-ray radiation-induced damage in DNA monitored by online Raman. J. Synchrotron Radiat. 2006, 14, 99–108. [Google Scholar] [CrossRef]
- Torreggiani, A.; Tamba, M.; Manco, I.; Faraone-Mennella, M.R.; Ferreri, C.; Chatgilialoglu, C. Investigation of radical-based damage of RNase A in aqueous solution and lipid vesicles. Biopolymers 2005, 81, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Shaw, C.P.; Jirasek, A. The Use of Ultraviolet Resonance Raman Spectroscopy in the Analysis of Ionizing-Radiation-Induced Damage in DNA. Appl. Spectrosc. 2009, 63, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Melin, A.-M.; Perromat, A.; Déléris, G. Sensitivity of Deinococcus radiodurans to γ-Irradiation: A novel approach by fourier transform infrared spectroscopy. Arch. Biochem. Biophys. 2001, 394, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Melin, A.-M.; Perromat, A.; Lorin, C.; Déléris, G. γ Irradiation and cellular damage in Kocuria rosea: Investigation by one- and two-dimensional infrared spectroscopy. Arch. Biochem. Biophys. 2002, 408, 211–219. [Google Scholar] [CrossRef]
- Perromat, A.; Melin, A.; Lorin, C.; Deleris, G. Fourier transform IR spectroscopic appraisal of radiation damage in Micrococcus luteus. Biopolymers 2003, 72, 207–216. [Google Scholar] [CrossRef]
- Letien, C.; Lafortune, R.; Shareck, F.; Lacroix, M. DNA analysis of a radiotolerant bacterium Pantoea agglomerans by FT-IR spectroscopy. Talanta 2007, 71, 1969–1975. [Google Scholar] [CrossRef]
- Little, M.P.; Cahoon, E.K.; Kitahara, C.M.; Simon, S.L.; Hamada, N.; Linet, M.S. Occupational radiation exposure and excess additive risk of cataract incidence in a cohort of US radiologic technologists. Occup. Environ. Med. 2020, 77, 1–8. [Google Scholar] [CrossRef]
- Allen, C.H.; Kumar, A.; Qutob, S.; Nyiri, B.J.; Chauhan, V.; Murugkar, S. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation. Phys. Med. Biol. 2017, 63, 025002. [Google Scholar] [CrossRef]
- Lasalvia, M.; Perna, G.; Pisciotta, P.; Cammarata, F.P.; Manti, L.; Capozzi, V. Raman spectroscopy for the evaluation of the radiobiological sensitivity of normal human breast cells at different time points after irradiation by a clinical proton beam. Analyst 2019, 144, 2097–2108. [Google Scholar] [CrossRef]
- Lasalvia, M.; Perna, G.; Manti, L.; Rasero, J.; Stramaglia, S.; Capozzi, V. Raman spectroscopy monitoring of MCF10A cells irradiated by protons at clinical doses. Int. J. Radiat. Biol. 2019, 95, 207–214. [Google Scholar] [CrossRef]
- Lipiec, E.; Wood, B.R.; Kulik, A.; Kwiatek, W.M.; Dietler, G. Nanoscale Investigation into the Cellular Response of Glioblastoma Cells Exposed to Protons. Anal. Chem. 2018, 90, 7644–7650. [Google Scholar] [CrossRef] [PubMed]
- Delfino, I.; Ricciardi, V.; Manti, L.; Lasalvia, M.; Lepore, M. Multivariate Analysis of Difference Raman Spectra of the Irradiated Nucleus and Cytoplasm Region of SH-SY5Y Human Neuroblastoma Cells. Sensors 2019, 19, 3971. [Google Scholar] [CrossRef] [PubMed]
- Delfino, I.; Perna, G.; Ricciardi, V.; Lasalvia, M.; Manti, L.; Capozzi, V.; Lepore, M. X-ray irradiation effects on nuclear and membrane regions of single SH-SY5Y human neuroblastoma cells investigated by Raman micro-spectroscopy. J. Pharm. Biomed. Anal. 2019, 164, 557–573. [Google Scholar] [CrossRef] [PubMed]
- Andolfi, L.; Meschini, R.; Filippi, S.; Bedolla, D.E.; Piccirilli, F.; Lepore, M.; Delfino, I. X-rays induced alterations in mechanical and biochemical properties of isolated SH-SY5Y nuclei. Biochim. Biophys. Acta (BBA) Gen. Subj. 2023, 1867, 130291. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.; Wrobel, T.P.; Panek, A.; Paluszkiewicz, C.; Kwiatek, W.M. Lipid droplets in prostate cancer cells and effect of irradiation studied by Raman microspectroscopy. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2020, 1865, 158753. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhang, F.; Huang, Q. FTIR Microspectroscopy Probes Particle-Radiation Effect on HCT116 cells (p53+/+, p53–/–). Radiat. Res. 2018, 189, 156–164. [Google Scholar] [CrossRef]
- Gault, N.; Lefaix, J.-L. Infrared microspectroscopic characteristics of radiation-induced apoptosis in human lymphocytes. Radiat. Res. 2003, 160, 238–250. [Google Scholar] [CrossRef]
- Gault, N.; Rigaud, O.; Poncy, J.-L.; Lefaix, J.-L. Infrared microspectroscopy study of γ-irradiated and H2O2-treated human cells. Int. J. Radiat. Biol. 2005, 81, 767–779. [Google Scholar] [CrossRef]
- Gault, N.; Rigaud, O.; Poncy, J.-L.; Lefaix, J.-L. Biochemical alterations in human cells irradiated with α particles delivered by macro- or microbeams. Radiat. Res. 2007, 167, 551–562. [Google Scholar] [CrossRef]
- Meade, A.D.; Clarke, C.; Byrne, H.J.; Lyng, F.M. Fourier transform infrared microspectroscopy and multivariate methods for radiobiological dosimetry. Radiat. Res. 2010, 173, 225–237. [Google Scholar] [CrossRef]
- Jafarzadeh, N.; Mani-Varnosfaderani, A.; Gilany, K.; Eynali, S.; Ghaznavi, H.; Shakeri-Zadeh, A. The molecular cues for the biological effects of ionizing radiation dose and post-irradiation time on human breast cancer SKBR3 cell line: A Raman spectroscopy study. J. Photochem. Photobiol. B Biol. 2018, 180, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pansare, K.; Singh, S.R.; Chakravarthy, V.; Gupta, N.; Hole, A.; Gera, P.; Sarin, R.; Krishna, C.M. Raman Spectroscopy: An Exploratory Study to Identify Post-Radiation Cell Survival. Appl. Spectrosc. 2020, 74, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Su, J.; Bao, X.; Wang, H.; Bian, C.; Zhao, Q.; Jiang, X. Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Front. Immunol. 2023, 14, 1247268. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hu, G.-H. Biomarkers for enhancing the radiosensitivity of nasopharyngeal carcinoma. Cancer Biol. Med. 2015, 12, 23–32. [Google Scholar] [CrossRef]
- Tsao, S.W.; Tsang, C.M.; Lo, K.W. Epstein–Barr virus infection and nasopharyngeal carcinoma. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160270. [Google Scholar] [CrossRef]
- Al-Anazi, A.E.; Alanazi, B.S.; Alshanbari, H.M.; Masuadi, E.; Hamed, M.E.; Dandachi, I.; Alkathiri, A.; Hanif, A.; Nour, I.; Fatani, H.; et al. Increased Prevalence of EBV Infection in Nasopharyngeal Carcinoma Patients: A Six-Year Cross-Sectional Study. Cancers 2023, 15, 643. [Google Scholar] [CrossRef]
- Qiu, S.; Weng, Y.; Li, Y.; Chen, Y.; Pan, Y.; Liu, J.; Lin, W.; Chen, X.; Li, M.; Lin, T.; et al. Raman profile alterations of irradiated human nasopharyngeal cancer cells detected with laser tweezer Raman spectroscopy. RSC Adv. 2020, 10, 14368–14373. [Google Scholar] [CrossRef]
- Ou, L.; Chen, Y.; Su, Y.; Zou, C.; Chen, Z. Detection of Genomic DNA Damage from Radiated Nasopharyngeal Carcinoma Cells Using Surface-Enhanced Raman Spectroscopy (SERS). Appl. Spectrosc. 2016, 70, 1821–1830. [Google Scholar] [CrossRef]
- Hill, I.E.; Boyd, M.; Milligan, K.; Jenkins, C.A.; Sorensen, A.; Jirasek, A.; Graham, D.; Faulds, K. Understanding radiation response and cell cycle variation in brain tumour cells using Raman spectroscopy. Analyst 2023, 148, 2594–2608. [Google Scholar] [CrossRef]
- Rauniyar, S.; Pansare, K.; Sharda, A.; Singh, S.R.; Saha, P.; Chilakapati, M.K.; Gupta, S. Raman Spectroscopy Revealed Cell Passage-Dependent Distinct Biochemical Alterations in Radiation-Resistant Breast Cancer Cells. ACS Omega 2023, 8, 5522–5532. [Google Scholar] [CrossRef]
- Xing, B.; Pu, C.; Chen, Y.; Sheng, Y.; Zhang, B.; Cui, J.; Wu, G.; Zhao, Y. Insights into the characteristics of primary radioresistant cervical cancer using single-cell transcriptomics. Hum. Cell 2023, 36, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, V.; Portaccio, M.; Manti, L.; Lepore, M. An FTIR Microspectroscopy Ratiometric Approach for Monitoring X-ray Irradiation Effects on SH-SY5Y Human Neuroblastoma Cells. Appl. Sci. 2020, 10, 2974. [Google Scholar] [CrossRef]
- Qi, J.; Liu, B.; Li, Y.; Wu, D.; Tang, W. Raman spectroscopic study on Hela cells irradiated by X rays of different doses. Chin. Opt. Lett. 2009, 7, 734–737. [Google Scholar] [CrossRef]
- Risi, R.; Manti, L.; Perna, G.; Lasalvia, M.; Capozzi, V.; Delfino, I.; Lepore, M. X-ray radiation-induced effects in human mammary epithelial cells investigated by Raman microspectroscopy. In Progress in Biomedical Optics and Imaging—Proceedings of SPIE; Society of Photo-Optical Instrumentation Engineers: Washington, DC, USA, 2012; p. 8427. [Google Scholar]
- Delfino, I.; Camerlingo, C.; Capozzi, V.; Perna, G.; Manti, L.; Lepore, M. Interval-Principal Component Analysis of Raman spectra of single cells exposed to X-ray radiation. In Proceedings of the 2014 Fotonica AEIT Italian Conference on Photonics Technologies, Naples, Italy, 12–14 May 2014; p. 4. [Google Scholar] [CrossRef]
- Delfino, I.; Perna, G.; Lasalvia, M.; Capozzi, V.; Manti, L.; Camerlingo, C.; Lepore, M. Visible micro-Raman spectroscopy of single human mammary epithelial cells exposed to x-ray radiation. J. Biomed. Opt. 2015, 20, 035003. [Google Scholar] [CrossRef]
- Lipiec, E.; Birarda, G.; Kowalska, J.; Lekki, J.; Vaccari, L.; Wiecheć, A.; Wood, B.; Kwiatek, W. A new approach to studying the effects of ionising radiation on single cells using FTIR synchrotron microspectroscopy. Radiat. Phys. Chem. 2013, 93, 135–141. [Google Scholar] [CrossRef]
- Lipiec, E.; Bambery, K.R.; Heraud, P.; Hirschmugl, C.; Lekki, J.; Kwiatek, W.M.; Tobin, M.J.; Vogel, C.; Whelan, D.; Wood, B.R. Synchrotron FTIR shows evidence of DNA damage and lipid accumulation in prostate adenocarcinoma PC-3 cells following proton irradiation. J. Mol. Struct. 2014, 1073, 134–141. [Google Scholar] [CrossRef]
- Yousef, I.; Seksek, O.; Gil, S.; Prezado, Y.; Sulé-Suso, J.; Martínez-Rovira, I. Study of the biochemical effects induced by X-ray irradiations in combination with gadolinium nanoparticles in F98 glioma cells: First FTIR studies at the Emira laboratory of the SESAME synchrotron. Analyst 2016, 141, 2238–2249. [Google Scholar] [CrossRef]
- Allen, C.H.; Skillings, R.; Ahmed, D.; Sanchez, S.C.; Altwasser, K.; Hilan, G.; Willmore, W.G.; Chauhan, V.; Cassol, E.; Murugkar, S. Investigating ionizing radiation-induced changes in breast cancer cells using stimulated Raman scattering microscopy. J. Biomed. Opt. 2023, 28, 076501. [Google Scholar] [CrossRef]
- Simon, I.; Hedesiu, M.; Virag, P.; Salmon, B.; Tarmure, V.; Baciut, M.; Bran, S.; Jacobs, R.; Falamas, A. Raman Micro-Spectroscopy of Dental Pulp Stem Cells: An Approach to Monitor the Effects of Cone Beam Computed Tomography Low-Dose Ionizing Radiation. Anal. Lett. 2019, 52, 1097–1111. [Google Scholar] [CrossRef]
- Matthews, Q.; Brolo, A.; Lum, J.; Duan, X.; Jirasek, A. Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro. Phys. Med. Biol. 2011, 56, 19–38. [Google Scholar] [CrossRef]
- Matthews, Q.; Jirasek, A.; Lum, J.J.; Brolo, A.G. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy. Phys. Med. Biol. 2011, 56, 6839–6855. [Google Scholar] [CrossRef] [PubMed]
- Harder, S.J.; Matthews, Q.; Isabelle, M.; Brolo, A.G.; Lum, J.J.; Jirasek, A. A Raman Spectroscopic Study of Cell Response to Clinical Doses of Ionizing Radiation. Appl. Spectrosc. 2015, 69, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Matthews, Q.; Isabelle, M.; Harder, S.J.; Smazynski, J.; Beckham, W.; Brolo, A.G.; Jirasek, A.; Lum, J.J. Radiation-Induced Glycogen Accumulation Detected by Single Cell Raman Spectroscopy Is Associated with Radioresistance that Can Be Reversed by Metformin. PLoS ONE 2015, 10, e0135356. [Google Scholar] [CrossRef] [PubMed]
- Milligan, K.; Deng, X.; Shreeves, P.; Ali-Adeeb, R.; Matthews, Q.; Brolo, A.; Lum, J.J.; Andrews, J.L.; Jirasek, A. Raman spectroscopy and group and basis-restricted non negative matrix factorisation identifies radiation induced metabolic changes in human cancer cells. Sci. Rep. 2021, 11, 3853. [Google Scholar] [CrossRef]
- Shreeves, P.; Andrews, J.L.; Deng, X.; Ali-Adeeb, R.; Jirasek, A. Nonnegative Matrix Factorization with Group and Basis Restrictions. Stat. Biosci. 2021, 15, 608–632. [Google Scholar] [CrossRef]
- Deng, X.; Ali-Adeeb, R.; Andrews, J.L.; Shreeves, P.; Lum, J.J.; Brolo, A.; Jirasek, A. Monitor Ionizing Radiation-Induced Cellular Responses with Raman Spectroscopy, Non-Negative Matrix Factorization, and Non-Negative Least Squares. Appl. Spectrosc. 2020, 74, 701–711. [Google Scholar] [CrossRef]
- Deng, X.; Milligan, K.; Brolo, A.; Lum, J.J.; Andrews, J.L.; Jirasek, A. Radiation treatment response and hypoxia biomarkers revealed by machine learning assisted Raman spectroscopy in tumour cells and xenograft tissues. Analyst 2022, 147, 5091–5104. [Google Scholar] [CrossRef]
- Deng, X.; Milligan, K.; Ali-Adeeb, R.; Shreeves, P.; Brolo, A.; Lum, J.J.; Andrews, J.L.; Jirasek, A. Group and Basis Restricted Non-Negative Matrix Factorization and Random Forest for Molecular Histotype Classification and Raman Biomarker Monitoring in Breast Cancer. Appl. Spectrosc. 2022, 76, 462–474. [Google Scholar] [CrossRef]
- Yasser, M.; Shaikh, R.; Chilakapati, M.K.; Teni, T. Raman spectroscopic study of radioresistant oral cancer sublines established by fractionated ionizing radiation. PLoS ONE 2014, 9, e97777. [Google Scholar] [CrossRef]
- Bentzen, S.M.; Overgaard, J. Patient-to-patient variability in the expression of radiation-induced normal tissue injury. Semin. Radiat. Oncol. 1994, 4, 68–80. [Google Scholar] [CrossRef]
- West, C.M.; Breat, Z. The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. Br. J. Cancer 1997, 76, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Amundson, S.A.; Do, K.T.; Vinikoor, L.C.; Lee, R.A.; Koch-Paiz, C.A.; Ahn, J.; Reimers, M.; Chen, Y.; Scudiero, D.A.; Weinstein, J.N.; et al. Integrating global gene expression and radiation survival parameters across the 60 cell lines of the national cancer institute anticancer drug screen. Cancer Res. 2008, 68, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Liberal, F.D.C.G.; McMahon, S.J. Characterization of Intrinsic Radiation Sensitivity in a Diverse Panel of Normal, Cancerous and CRISPR-Modified Cell Lines. Int. J. Mol. Sci. 2023, 24, 7861. [Google Scholar] [CrossRef] [PubMed]
- Mollaee, P.F.; Azimian, H.; Ghadim, N.Z.; Dolat, E.; Sheykhoo, A.; Bahreyni-Toossi, M.-T. The role of intrinsic radiosensitivity in the low-dose adaptive response induction in human peripheral blood mononuclear cells. J. Cancer Res. Ther. 2023, 19 (Suppl. S2), S737. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, G.; Zorlu, F.; Severcan, M.; Severcan, F. Screening of Protective Effect of Amifostine on Radiation-Induced Structural and Functional Variations in Rat Liver Microsomal Membranes by FT-IR Spectroscopy. Anal. Chem. 2011, 83, 2438–2444. [Google Scholar] [CrossRef]
- Cakmak, G.; Miller, L.M.; Zorlu, F.; Severcan, F. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study. Arch. Biochem. Biophys. 2012, 520, 67–73. [Google Scholar] [CrossRef]
- Demir, P.; Akkas, S.B.; Severcan, M.; Zorlu, F.; Severcan, F. Ionizing Radiation Induces Structural and Functional Damage on the Molecules of Rat Brain Homogenate Membranes: A Fourier Transform Infrared (FT-IR) Spectroscopic Study. Appl. Spectrosc. 2015, 69, 154–164. [Google Scholar] [CrossRef]
- Abdelrazzak, A.B.; El-Bahy, G.S. FT-IR spectroscopic investigation of ionizing radiation-induced damage in the small intestine of whole-body irradiated rats. Vib. Spectrosc. 2018, 99, 146–150. [Google Scholar] [CrossRef]
- Harder, S.J.; Isabelle, M.; DeVorkin, L.; Smazynski, J.; Beckham, W.; Brolo, A.G.; Lum, J.J.; Jirasek, A. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts. Sci. Rep. 2016, 6, 21006. [Google Scholar] [CrossRef]
- Van Nest, S.J.; Nicholson, L.M.; Pavey, N.; Hindi, M.N.; Brolo, A.G.; Jirasek, A.; Lum, J.J. Raman spectroscopy detects metabolic signatures of radiation response and hypoxic fluctuations in non-small cell lung cancer. BMC Cancer 2019, 19, 474. [Google Scholar] [CrossRef]
- Vrbik, I.; Van Nest, S.J.; Meksiarun, P.; Loeppky, J.; Brolo, A.; Lum, J.J.; Jirasek, A. Haralick texture feature analysis for quantifying radiation response heterogeneity in murine models observed using Raman spectroscopic mapping. PLoS ONE 2019, 14, e0212225. [Google Scholar] [CrossRef] [PubMed]
- Van Nest, S.J.; Nicholson, L.M.; DeVorkin, L.; Brolo, A.G.; Lum, J.J.; Jirasek, A. Raman Spectroscopic Signatures Reveal Distinct Biochemical and Temporal Changes in Irradiated Human Breast Adenocarcinoma Xenografts. Radiat. Res. 2018, 189, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Ali-Adeeb, R.N.; Shreeves, P.; Deng, X.; Milligan, K.; Brolo, A.G.; Lum, J.J.; Haston, C.; Andrews, J.L.; Jirasek, A. Raman microspectroscopy and machine learning for use in identifying radiation-induced lung toxicity. PLoS ONE 2022, 17, e0279739. [Google Scholar] [CrossRef] [PubMed]
- Meade, A.D.; Howe, O.; Unterreiner, V.; Sockalingum, G.D.; Byrne, H.J.; Lyng, F.M. Vibrational spectroscopy in sensing radiobiological effects: Analyses of targeted and non-targeted effects in human keratinocytes. Faraday Discuss. 2013, 187, 213–234. [Google Scholar] [CrossRef]
- Lipiec, E.; Bambery, K.R.; Lekki, J.M.; Tobin, J.; Vogel, C.; Whelan, D.R.; Wood, B.R. SR-FTIR Coupled with Principal Component Analysis Shows Evidence for the Cellular Bystander Effect. Radiat. Res. 2015, 184, 73–82. [Google Scholar] [CrossRef]
- Slattery, C.; Nguyen, K.; Shields, L.; Vega-Carrascal, I.; Singleton, S.; Lyng, F.M.; McClean, B.; Meade, A.D. Application of Advanced Non-Linear Spectral Decomposition and Regression Methods for Spectroscopic Analysis of Targeted and Non-Targeted Irradiation Effects in an In-Vitro Model. Int. J. Mol. Sci. 2022, 23, 12986. [Google Scholar] [CrossRef]
- Abdelrazzak, A.B.; Hezma, A.; El-Bahy, G.S. ATR-FTIR spectroscopy probing of structural alterations in the cellular membrane of abscopal liver cells. Biochim. Biophys. Acta (BBA) Biomembr. 2021, 1863, 183726. [Google Scholar] [CrossRef]
- Camerlingo, C.; Verde, A.; Manti, L.; Meschini, R.; Delfino, I.; Lepore, M. Graphene-Based Raman Spectroscopy for pH Sensing of X-rays Exposed and Unexposed Culture Media and Cells. Sensors 2018, 18, 2242. [Google Scholar] [CrossRef]
- Hübner, W.; Blume, A.; Pushnjakova, R.; Dekhtyar, Y.; Hein, H.-J. The Influence of X-ray Radiation on the Mineral/Organic Matrix Interaction of Bone Tissue: An FT-IR Microscopic Investigation. Int. J. Artif. Organs 2005, 28, 66–73. [Google Scholar] [CrossRef]
- Green, D.E.; Adler, B.J.; Chan, M.E.; Lennon, J.J.; Acerbo, A.S.; Miller, L.M.; Rubin, C.T. Altered Composition of Bone as Triggered by Irradiation Facilitates the Rapid Erosion of the Matrix by Both Cellular and Physicochemical Processes. PLoS ONE 2013, 8, e64952. [Google Scholar] [CrossRef]
- Gong, B.; Oest, M.E.; Mann, K.A.; Damron, T.A.; Morris, M.D. Raman spectroscopy Demonstrates Prolonged Alteration of Bone Chemical composition following extremity localized irradiation. Bone 2013, 57, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Tchanque-Fossuo, C.N.; Gong, B.; Poushanchi, B.; Donneys, A.; Sarhaddi, D.; Gallagher, K.K.; Deshpande, S.S.; Goldstein, S.A.; Morris, M.D.; Buchman, S.R. Raman spectroscopy demonstrates Amifostine induced preservation of bone mineralization patterns in the irradiated murine mandible. Bone 2013, 52, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Felice, P.A.; Gong, B.; Ahsan, S.; Deshpande, S.S.; Nelson, N.S.; Donneys, A.; Tchanque-Fossuo, C.; Morris, M.D.; Buchman, S.R. Raman spectroscopy delineates radiation-induced injury and partial rescue by amifostine in bone: A murine mandibular model. J. Bone Miner. Metab. 2015, 33, 279–284. [Google Scholar] [CrossRef]
- Limirio, P.H.J.O.; Soares, P.B.F.; Emi, E.T.P.; Lopes, C.d.C.A.; Rocha, F.S.; Batista, J.D.; Rabelo, G.D.; Dechichi, P. Ionizing radiation and bone quality: Time-dependent effects. Radiat. Oncol. 2019, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- El-Hansi, N.S.; Said, H.H.; Desouky, O.S.; Khalaf, M.A.; Talaat, M.S.; Sallam, A.M. XRD and ATR-FTIR techniques for integrity assessment of gamma radiation sterilized cortical bone pretreated by antioxidants. Cell Tissue Bank. 2021, 22, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Kubisz, L.; Połomska, M. FT NIR Raman studies on γ-irradiated bone. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 66, 616–625. [Google Scholar] [CrossRef]
- Barth, H.D.; Launey, M.E.; MacDowell, A.A.; Ager, J.W.; Ritchie, R.O. On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone 2010, 46, 1475–1485. [Google Scholar] [CrossRef]
- Barth, H.D.; Zimmermann, E.A.; Schaible, E.; Tang, S.Y.; Alliston, T.; Ritchie, R.O. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials 2011, 32, 8892–8904. [Google Scholar] [CrossRef]
- de Castro, P.A.A.; Dias, D.A.; Del-Valle, M.; Veloso, M.N.; Somessari, E.S.R.; Zezell, D.M. Assessment of bone dose response using ATR-FTIR spectroscopy: A potential method for biodosimetry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 273, 120900. [Google Scholar] [CrossRef]
- Lam, S.E.; Nawi, S.N.M.; Sani, S.F.A.; Khandaker, M.U.; Bradley, D.A. Raman and photoluminescence spectroscopy analysis of gamma irradiated human hair. Sci. Rep. 2021, 11, 7939. [Google Scholar] [CrossRef]
- Jyothi Lakshmi, R.; Kartha, V.B.; Murali Krishna, C.; Solomon, J.G.R.; Ullas, G.; Uma Devi, P. Tissue Raman Spectroscopy for the Study of Radiation Damage: Brain Irradiation of Mice. Radiat. Res. 2002, 157, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, R.J.; Alexander, M.; Kurien, J.; Mahato, K.K.; Kartha, V.B. Osteoradionecrosis (ORN) of the Mandible: A Laser Raman Spectroscopic Study. Appl. Spectrosc. 2003, 57, 1100–1116. [Google Scholar] [CrossRef] [PubMed]
- Toyran, N.; Zorlu, F.; Severcan, F. Effect of stereotactic radiosurgery on lipids and proteins of normal and hypoperfused rat brain homogenates: A Fourier transform infrared spectroscopy study. Int. J. Radiat. Biol. 2005, 81, 911–918. [Google Scholar] [CrossRef] [PubMed]
- de Boer, J.; Synytsya, A.; Alexa, P.; Besserer, J.; Froschauer, S.; Loewe, M.; Moosburger, M.; Volka, K.; Würkner, M. The effect of proton-irradiation on the Raman spectroscopy of tissue samples. Radiother. Oncol. 2004, 73, S102–S104. [Google Scholar] [CrossRef]
- Synytsya, A.; Alexa, P.; Besserer, J.; De Boer, J.; Froschauer, S.; Gerlach, R.; Loewe, M.; Moosburger, M.; Obstová, I.; Quicken, P.; et al. Raman spectroscopy of tissue samples irradiated by protons. Int. J. Radiat. Biol. 2004, 80, 581–591. [Google Scholar] [CrossRef]
- Vidyasagar, M.S.; Maheedhar, K.; Vadhiraja, B.M.; Fernendes, D.J.; Kartha, V.B.; Krishna, C.M. Prediction of radiotherapy response in cervix cancer by Raman spectroscopy: A pilot study. Biopolymers 2008, 89, 530–537. [Google Scholar] [CrossRef]
- Florkowski, C.M. Sensitivity, Specificity, Receiver-Operating Characteristic (ROC) Curves and Likelihood Ratios: Communicating the Performance of Diagnostic Tests. Clin. Biochem. Rev. 2008, 29 (Suppl. S1), S83–S87. [Google Scholar]
- Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Carter, J.V.; Pan, J.; Rai, S.N.; Galandiuk, S. ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery 2016, 159, 1638–1645. [Google Scholar] [CrossRef]
- Muhammad, M.; Shao, C.; Huang, Q. Label-free SERS diagnostics of radiation-induced injury via detecting the biomarker Raman signal in the serum and urine bio-samples based on Au-NPs array substrates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 223, 117282. [Google Scholar] [CrossRef]
- Kumar, S.; Visvanathan, A.; Arivazhagan, A.; Santhosh, V.; Somasundaram, K.; Umapathy, S. Assessment of Radiation Resistance and Therapeutic Targeting of Cancer Stem Cells: A Raman Spectroscopic Study of Glioblastoma. Anal. Chem. 2018, 90, 12067–12074. [Google Scholar] [CrossRef] [PubMed]
- Markouizou, A.; Michali, E.; Mamareli, C.; Anastassopoulou, J.; Kolovou, P.; Mamarelis, I.; Theophanides, T. The Effect of Irradiation on the Skin upon Breast Cancer Radiotherapy Studied by FTIR Spectroscopy. OBM Geriatr. 2022, 6, 1–15. [Google Scholar] [CrossRef]
- Delanian, S.; Lefaix, J.-L. The radiation-induced fibroatrophic process: Therapeutic perspective via the antioxidant pathway. Radiother. Oncol. 2004, 73, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Chambrone, L.; Mandia, J.; Shibli, J.; Romito, G.; Abrahao, M. Dental Implants Installed in Irradiated Jaws. J. Dent. Res. 2013, 92, 119S–130S. [Google Scholar] [CrossRef]
- Nadella, K.R.; Kodali, R.M.; Guttikonda, L.K.; Jonnalagadda, A. Osteoradionecrosis of the Jaws: Clinico-Therapeutic Management: A Literature Review and Update. J. Maxillofac. Oral Surg. 2015, 14, 891–901. [Google Scholar] [CrossRef]
- Iqbal, Z.; Kyzas, P. Analysis of the critical dose of radiation therapy in the incidence of Osteoradionecrosis in head and neck cancer patients: A case series. BDJ Open 2020, 6, 1–6. [Google Scholar] [CrossRef]
- Singh, S.; Parviainen, I.; Dekker, H.; Schulten, E.A.J.M.; Ten Bruggenkate, C.M. Raman Microspectroscopy Demonstrates Alterations in Human Mandibular Bone after Radiotherapy. J. Anal. Bioanal. Tech. 2015, 6, 276. [Google Scholar] [CrossRef]
- Padala, S.R.; Saikia, D.; Mikkonen, J.J.W.; Uurasjärvi, E.; Dekker, H.; Schulten, E.A.J.M.; Bravenboer, N.; Koistinen, A.; Chauhan, A.; Singh, S.P.; et al. Irradiation Induced Biochemical Changes in Human Mandibular Bone: A Raman Spectroscopic Study. Appl. Spectrosc. 2022, 76, 1165–1173. [Google Scholar] [CrossRef]
- Palander, A.; Dekker, H.; Hyvarinen, M.; Rieppo, L.; Lyijynen, I.; Schulten, E.A.J.M.; Bruggenkate, C.M.T.; Koistinen, A.; Kullaa, A.; Turunen, M.J. Long-term changes in mandibular bone microchemical quality after radiation therapy and underlying systemic malignancy: A pilot study. J. Innov. Opt. Health Sci. 2021, 14, 2150019. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Committee to Study the Feasibility of, and Need for, Epidemiologic Studies of Adverse Reproductive Outcomes in the Families of Atomic Veterans. Basic Principles of Radiation Biology. In Adverse Reproductive Outcomes in Families of Atomic Veterans: The Feasibility of Epidemiologic Studies; National Academies Press: Washington, DC, USA, 1995. [Google Scholar]
- Narayanan, P.K.; Goodwin, E.H.; Lehnert, B.E. Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res. 1997, 57, 3963–3971. [Google Scholar]
- Mitteer, R.A.; Wang, Y.; Shah, J.; Gordon, S.; Fager, M.; Butter, P.-P.; Kim, H.J.; Guardiola-Salmeron, C.; Carabe-Fernandez, A.; Fan, Y. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci. Rep. 2015, 5, 13961. [Google Scholar] [CrossRef]
- Chusreeaeom, K.; Khamsuk, O. Effects of gamma irradiation on lipid peroxidation, survival and growth of turmeric in vitro culture. J. Phys. Conf. Ser. 2019, 1285, 012003. [Google Scholar] [CrossRef]
- Jia, S.; Ge, S.; Fan, X.; Leong, K.W.; Ruan, J. Promoting reactive oxygen species generation: A key strategy in nanosensitizer-mediated radiotherapy. Nanomedicine 2021, 16, 759–778. [Google Scholar] [CrossRef] [PubMed]
- Obrador, E.; Montoro, A. Ionizing Radiation, Antioxidant Response and Oxidative Damage: Radiomodulators. Antioxidants 2023, 12, 1219. [Google Scholar] [CrossRef]
- Ping, Z.; Peng, Y.; Lang, H.; Cai, X.; Zeng, Z.; Wu, X.; Zeng, H.; Shao, L. Oxidative stress in radiation-induced cardiotoxicity. Oxidat. Med. Cell. Longev. 2020, 1, 3579143. [Google Scholar] [CrossRef]
- Halliwell, B. Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come? Am. J. Clin. Nutr. 2000, 72, 1082–1087. [Google Scholar] [CrossRef]
- Gedik, C.M.; Boyle, S.P.; Wood, S.G.; Vaughan, N.J.; Collins, A.R. Oxidative stress in humans: Validation of biomarkers of DNA damage. Carcinogenesis 2002, 23, 1441–1446. [Google Scholar] [CrossRef]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2003, 17, 1195–1214. [Google Scholar] [CrossRef]
- Salmon, T.B.; Evert, B.A.; Song, B.; Doetsch, P.W. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 2004, 32, 3712–3723. [Google Scholar] [CrossRef]
- Maynard, S.; Schurman, S.H.; Harboe, C.; de Souza-Pinto, N.C.; Bohr, V.A. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009, 30, 2–10. [Google Scholar] [CrossRef]
- Juan, C.A.; de la Lastra, J.M.P.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef] [PubMed]
- Kiang, J.G.; Fukumoto, R.; Gorbunov, N.V. Lipid Peroxidation After Ionizing Irradiation Leads to Apoptosis and Autophagy. In Lipid Peroxidation; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Mortensen, M.S.; Ruiz, J.; Watts, J.L. Polyunsaturated Fatty Acids Drive Lipid Peroxidation during Ferroptosis. Cells 2023, 12, 804. [Google Scholar] [CrossRef] [PubMed]
- Maia, G.A.S.; Renó, C.d.O.; Medina, J.M.; da Silveira, A.B.; Mignaco, J.A.; Atella, G.C.; Cortes, V.F.; Barbosa, L.A.; Santos, H.d.L. The effect of gamma radiation on the lipid profile of irradiated red blood cells. Ann. Hematol. 2014, 93, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Watson, H. Biological membranes. Essays Biochem. 2015, 59, 43–69. [Google Scholar] [CrossRef] [PubMed]
- Le Maire, M.; Thauvette, L.; de Foresta, B.; Viel, A.; Beauregard, G.; Potier, M. Effects of ionizing radiations on proteins. Evidence of non-random fragmentations and a caution in the use of the method for determination of molecular mass. Biochem. J. 1990, 267, 431–439. [Google Scholar] [CrossRef]
- Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection. Antioxid. Redox Signal. 2014, 21, 260–292. [Google Scholar] [CrossRef]
- Bansal, R.; Jha, S.K.; Jha, N.K. Size-based Degradation of Therapeutic Proteins—Mechanisms, Modelling and Control. Biomol. Concepts 2021, 12, 68–84. [Google Scholar] [CrossRef]
- Amlan, C.; Abhijeet, D. Effect of Low Power mm wave Irradiation on sedimentation, coagulation and light absorbance of purified Bovine Serum Albumin. Helix 2012, 3, 165–168. [Google Scholar]
- Lalande, M.; Schwob, L.; Vizcaino, V.; Chirot, F.; Dugourd, P.; Schlathölter, T.; Poully, J. Direct Radiation Effects on the Structure and Stability of Collagen and Other Proteins. ChemBioChem 2019, 20, 2972–2980. [Google Scholar] [CrossRef]
- Gillard, N.; Goffinont, S.; Buré, C.; Davidkova, M.; Maurizot, J.-C.; Cadene, M.; Spotheim-Maurizot, M. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor. Biochem. J. 2007, 403, 463–472. [Google Scholar] [CrossRef]
- Afify, A.E.-M.M.R.; Rashed, M.M.; Mahmoud, E.A. Effect of Gamma Radiation on Protein Profile, Protein Fraction and Solubility’s of Three Oil Seeds: Soybean, Peanut and Sesame. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 90–98. [Google Scholar] [CrossRef]
- Zhang, R.K.; Lyu, J.H.; Li, T. Effects of Radiation on Protein. J. Nutr. Oncol. 2020, 5, 116–122. [Google Scholar] [CrossRef]
- Bahreinipour, M.; Zarei, H.; Dashtestani, F.; Rashidiani, J.; Eskandari, K.; Zarandi, S.A.M.; Ardestani, S.K.; Watabe, H. Radioprotective effect of nanoceria and magnetic flower-like iron oxide microparticles on gamma radiation-induced damage in BSA protein. AIMS Biophys. 2021, 8, 124–142. [Google Scholar] [CrossRef]
- Ghosh, S.P.; Singh, R.; Chakraborty, K.; Kulkarni, S.; Uppal, A.; Luo, Y.; Kaur, P.; Pathak, R.; Kumar, K.S.; Hauer-Jensen, M.; et al. Metabolomic Changes in Gastrointestinal Tissues after Whole Body Radiation in a Murine Model. Mol. Biosyst. 2013, 9, 723–731. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, X.; Qiao, Y.; Wu, S.; Dong, F.; Chen, Y. Selection of candidate radiation biomarkers in the serum of rats exposed to gamma-rays byGC/TOFMS-based metabolomics. Radiat. Prot. Dosim. 2013, 154, 9–17. [Google Scholar] [CrossRef]
- Laiakis, E.C.; Mak, T.D.; Anizan, S.; Amundson, S.A.; Barker, C.A.; Wolden, S.L.; Brenner, D.J.; Fornace, A.J. Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation. Radiat. Res. 2014, 181, 350–361. [Google Scholar] [CrossRef]
- Menon, S.S.; Uppal, M.; Randhawa, S.; Cheema, M.S.; Aghdam, N.; Usala, R.L.; Ghosh, S.P.; Cheema, A.K.; Dritschilo, A. Radiation Metabolomics: Current Status and Future Directions. Front. Oncol. 2016, 6, 20. [Google Scholar] [CrossRef]
- Thotala, D.K.; E Hallahan, D.; Yazlovitskaya, E.M. Glycogen synthase kinase 3β inhibitors protect hippocampal neurons from radiation-induced apoptosis by regulating MDM2-p53 pathway. Cell Death Differ. 2012, 19, 387–396. [Google Scholar] [CrossRef]
- Jiang, X.; Perez-Torres, C.J.; Thotala, D.; Engelbach, J.A.; Yuan, L.; Cates, J.; Gao, F.; Drzymala, R.E.; Rich, K.M.; Schmidt, R.E.; et al. A GSK-3β inhibitor protects against radiation necrosis in mouse brain. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 714–721. [Google Scholar] [CrossRef]
- Sanli, T.; Steinberg, G.R.; Singh, G.; Tsakiridis, T. AMP-activated protein kinase (AMPK) beyond metabolism: A novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol. Ther. 2014, 15, 156–169. [Google Scholar] [CrossRef]
- Rae, C.; Mairs, R.J. AMPK activation by AICAR sensitizes prostate cancer cells to radiotherapy. Oncotarget 2019, 10, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Zois, C.E.; Hendriks, A.M.; Haider, S.; Pires, E.; Bridges, E.; Kalamida, D.; Voukantsis, D.; Lagerholm, B.C.; Fehrmann, R.S.N.; Dunnen, W.F.A.D.; et al. Liver glycogen phosphorylase is upregulated in glioblastoma and provides a metabolic vulnerability to high dose radiation. Cell Death Dis. 2022, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ronca, R.; Supuran, C.T. Carbonic anhydrase IX: An atypical target for innovative therapies in cancer. Biochim. Biophys. Acta (BBA) Rev. Cancer 2024, 1879, 189120. [Google Scholar] [CrossRef] [PubMed]
- Oike, T.; Komatsu, S.; Komatsu, Y.; Nachankar, A.; Darwis, N.D.M.; Shibata, A.; Ohno, T. Reporting of methodologies used for clonogenic assays to determine radiosensitivity. J. Radiat. Res. 2020, 61, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Tipatet, K.S.; Davison-Gates, L.; Tewes, T.J.; Fiagbedzi, E.K.; Elfick, A.; Neu, B.; Downes, A. Detection of acquired radioresistance in breast cancer cell lines using Raman spectroscopy and machine learning. Analyst 2021, 146, 3709–3716. [Google Scholar] [CrossRef]
- Hong, S.; Kim, I.H. The Optimal Condition of Performing MTT Assay for the Determination of Radiation Sensitivity. J. Korean Soc. Ther. Radiol. Oncol. 2001, 19, 163–170. [Google Scholar]
- Kjellström, J.; Kjellén, E.; Johnsson, A. In vitro radiosensitization by oxaliplatin and 5-fluorouracil in a human colon cancer cell line. Acta Oncol. 2005, 44, 687–693. [Google Scholar] [CrossRef]
- Friesner, J.D.; Liu, B.; Culligan, K.; Britt, A.B. Ionizing radiation–dependent γ-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Mol. Biol. Cell 2005, 16, 2566–2576. [Google Scholar] [CrossRef]
- Rothkamm, K.; Crosbie, J.C.; Daley, F.; Bourne, S.; Barber, P.R.; Vojnovic, B.; Cann, L.; Rogers, P.A.W. In situ biological dose mapping estimates the radiation burden delivered to ‘spared’ tissue between synchrotron x-ray microbeam radiotherapy tracks. PLoS ONE 2012, 7, e29853. [Google Scholar] [CrossRef]
- Rai, Y.; Pathak, R.; Kumari, N.; Sah, D.K.; Pandey, S.; Kalra, N.; Soni, R.; Dwarakanath, B.S.; Bhatt, A.N. Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Sci. Rep. 2018, 8, 1531. [Google Scholar] [CrossRef]
- Georgescu, W.; Osseiran, A.; Rojec, M.; Liu, Y.; Bombrun, M.; Tang, J.; Costes, S.V. Characterizing the DNA Damage Response by Cell Tracking Algorithms and Cell Features Classification Using High-Content Time-Lapse Analysis. PLoS ONE 2015, 10, e0129438. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Guo, Z.; Pei, S.; Song, L.; Wang, C.; Ma, J.; Jin, L.; Ma, Y.; He, R.; Zhong, J.; et al. pATM and γH2AX are effective radiation biomarkers in assessing the radiosensitivity of 12C6+ in human tumor cells. Cancer Cell Int. 2017, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Lobrich, P.K.C.A.B.R.M. Non-random distribution of DNA double-strand breaks induced by particle irradiation. Int. J. Radiat. Biol. 1996, 70, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Barnard, S.; Bouffler, S.; Rothkamm, K. The shape of the radiation dose response for DNA double-strand break induction and repair. Genome Integr. 2013, 4, 1. [Google Scholar] [CrossRef]
- Neugebauer, U.; Trenkmann, S.; Bocklitz, T.; Schmerler, D.; Kiehntopf, M.; Popp, J. Fast differentiation of SIRS and sepsis from blood plasma of ICU patients using Raman spectroscopy. J. Biophotonics 2014, 7, 232–240. [Google Scholar] [CrossRef]
- Ho, C.-S.; Jean, N.; Hogan, C.A.; Blackmon, L.; Jeffrey, S.S.; Holodniy, M.; Banaei, N.; Saleh, A.A.E.; Ermon, S.; Dionne, J. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 2019, 10, 4927. [Google Scholar] [CrossRef]
- Huber, M.; Kepesidis, K.V.; Voronina, L.; Božić, M.; Trubetskov, M.; Harbeck, N.; Krausz, F.; Žigman, M. Stability of person-specific blood-based infrared molecular fingerprints opens up prospects for health monitoring. Nat. Commun. 2021, 12, 1511. [Google Scholar] [CrossRef]
- Nogueira, M.S.; Leal, L.B.; Marcarini, W.D.; Pimentel, R.L.; Muller, M.; Vassallo, P.F.; Campos, L.C.G.; dos Santos, L.; Luiz, W.B.; Mill, J.G.; et al. Rapid diagnosis of COVID-19 using FT-IR ATR spectroscopy and machine learning. Sci. Rep. 2021, 11, 15409. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Tang, J.-W.; Wang, J.-J.; Liu, Q.-H.; Wen, P.-B.; Wang, M.-M.; Pan, Y.-C.; Gu, B.; Zhang, X. Applications of Raman Spectroscopy in Bacterial Infections: Principles, Advantages, and Shortcomings. Front. Microbiol. 2021, 12, 683580. [Google Scholar] [CrossRef]
- Hanna, K.; Krzoska, E.; Shaaban, A.M.; Muirhead, D.; Abu-Eid, R.; Speirs, V. Raman spectroscopy: Current applications in breast cancer diagnosis, challenges and future prospects. Br. J. Cancer 2022, 126, 1125–1139. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, Q.; Li, B.; Zhao, X. Raman Spectroscopy: A Novel Technology for Gastric Cancer Diagnosis. Front. Bioeng. Biotechnol. 2022, 10, 856591. [Google Scholar] [CrossRef] [PubMed]
- Caixeta, D.C.; Lima, C.; Xu, Y.; Guevara-Vega, M.; Espindola, F.S.; Goodacre, R.; Zezell, D.M.; Sabino-Silva, R. Monitoring glucose levels in urine using FTIR spectroscopy combined with univariate and multivariate statistical methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 290, 122259. [Google Scholar] [CrossRef] [PubMed]
- Lukose, J.; Barik, A.K.; George, S.D.; Murukeshan, V.M.; Chidangil, S. Raman spectroscopy for viral diagnostics. Biophys. Rev. 2023, 15, 199–221. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Shuai, W.; Chen, X.; Luo, C.; Chen, Y.; Shi, Y.; Li, Z.; Lv, X.; Chen, C.; Meng, X.; et al. Rapid screening for autoimmune diseases using Fourier transform infrared spectroscopy and deep learning algorithms. Front. Immunol. 2023, 14, 1328228. [Google Scholar] [CrossRef]
- Lovergne, L.; Clemens, G.; Untereiner, V.; Lukaszweski, R.A.; Sockalingum, G.D.; Baker, M.J. Investigating optimum sample preparation for infrared spectroscopic serum diagnostics. Anal. Methods 2015, 7, 7140–7149. [Google Scholar] [CrossRef]
- Lovergne, L.; Bouzy, P.; Untereiner, V.; Garnotel, R.; Baker, M.J.; Thiéfin, G.; Sockalingum, G.D. Biofluid infrared spectro-diagnostics: Pre-analytical considerations for clinical applications. Faraday Discuss. 2016, 187, 521–537. [Google Scholar] [CrossRef]
- Lovergne, L.; Lovergne, J.; Bouzy, P.; Untereiner, V.; Offroy, M.; Garnotel, R.; Thiéfin, G.; Baker, M.J.; Sockalingum, G.D. Investigating pre-analytical requirements for serum and plasma based infrared spectro-diagnostic. J. Biophotonics 2019, 12, e201900177. [Google Scholar] [CrossRef]
- Cameron, J.M.; Butler, H.J.; Anderson, D.J.; Christie, L.; Confield, L.; Spalding, K.E.; Finlayson, D.; Murray, S.; Panni, Z.; Rinaldi, C.; et al. Exploring pre-analytical factors for the optimisation of serum diagnostics: Progressing the clinical utility of ATR-FTIR spectroscopy. Vib. Spectrosc. 2020, 109, 103092. [Google Scholar] [CrossRef]
- Monaghan, J.F.; Cullen, D.; Wynne, C.; Lyng, F.M.; Meade, A.D. Effect of pre-analytical variables on Raman and FTIR spectral content of lymphocytes. Analyst 2023, 148, 5422–5434. [Google Scholar] [CrossRef]
- Hasenkampf, A.; Kröger, N.; Schönhals, A.; Petrich, W.; Pucci, A. Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser. Opt. Express 2015, 23, 5670–5680. [Google Scholar] [CrossRef]
- Kuepper, C.; Kallenbach-Thieltges, A.; Juette, H.; Tannapfel, A.; Großerueschkamp, F.; Gerwert, K. Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections. Sci. Rep. 2018, 8, 7717. [Google Scholar] [CrossRef] [PubMed]
- Chemometric Imaging STRALE (STimulated RAman LasEr), CRI-Chemometric Imaging. 2024. Available online: https://www.cambridgeramanimaging.com/coral/ (accessed on 25 April 2024).
- Hu, F.; Shi, L.; Min, W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat. Methods 2019, 16, 830–842. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.-X.; Xie, X.S. Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications. J. Phys. Chem. B 2004, 108, 827–840. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Yi, R.; Liu, L.; Qu, J. Coherent Anti-Stokes Raman Scattering Microscopy and Its Applications. Front. Phys. 2020, 8, 598420. [Google Scholar] [CrossRef]
- Grant-Peters, M.; Rich-Griffin, C.; E Grant-Peters, J.; Cinque, G.; A Dendrou, C. Photizo: An open-source library for cross-sample analysis of FTIR spectroscopy data. Bioinformatics 2022, 38, 3490–3492. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Kyne, M.; Wang, S.; Wang, S.; Yu, X.-Y.; Wang, C. A User-Friendly Platform for Single-Cell Raman Spectroscopy Analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 282, 121686. [Google Scholar] [CrossRef]
- Schmidt, R.W.; Woutersen, S.; Ariese, F. RamanLIGHT—a graphical user-friendly tool for pre-processing and unmixing hyperspectral Raman spectroscopy images. J. Opt. 2022, 24, 064011. [Google Scholar] [CrossRef]
- Sheehy, G.; Picot, F.; Dallaire, F.; Ember, K.J.; Nguyen, T.; Petrecca, K.; Trudel, D.; Leblond, F. Open-sourced Raman spectroscopy data processing package implementing a baseline removal algorithm validated from multiple datasets acquired in human tissue and biofluids. J. Biomed. Opt. 2023, 28, 025002. [Google Scholar] [CrossRef]
- Owens, N.A.; Laurentius, L.B.; Porter, M.D.; Li, Q.; Wang, S.; Chatterjee, D. Handheld Raman Spectrometer Instrumentation for Quantitative Tuberculosis Biomarker Detection: A Performance Assessment for Point-of-Need Infectious Disease Diagnostics. Appl. Spectrosc. 2018, 72, 1104–1115. [Google Scholar] [CrossRef]
- Heraud, P.; Chatchawal, P.; Wongwattanakul, M.; Tippayawat, P.; Doerig, C.; Jearanaikoon, P.; Perez-Guaita, D.; Wood, B.R. Infrared spectroscopy coupled to cloud-based data management as a tool to diagnose malaria: A pilot study in a malaria-endemic country. Malar. J. 2019, 18, 348. [Google Scholar] [CrossRef]
- Roy, S.; Perez-Guaita, D.; Bowden, S.; Heraud, P.; Wood, B.R. Spectroscopy goes viral: Diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy. Clin. Spectrosc. 2019, 1, 100001. [Google Scholar] [CrossRef]
- Ali, A.; Nettey-Oppong, E.E.; Effah, E.; Yu, C.Y.; Muhammad, R.; Soomro, T.A.; Byun, K.M.; Choi, S.H. Miniaturized Raman Instruments for SERS-Based Point-of-Care Testing on Respiratory Viruses. Biosensors 2022, 12, 590. [Google Scholar] [CrossRef] [PubMed]
- Soliman, C.; Tu, D.; Mabbott, S.; Coté, G.; Maitland, K. Portable, multi-modal Raman and fluorescence spectroscopic platform for point-of-care applications. J. Biomed. Opt. 2022, 27, 095006. [Google Scholar] [CrossRef] [PubMed]
- Caixeta, D.C.; Carneiro, M.G.; Rodrigues, R.; Alves, D.C.T.; Goulart, L.R.; Cunha, T.M.; Espindola, F.S.; Vitorino, R.; Sabino-Silva, R. Salivary ATR-FTIR Spectroscopy Coupled with Support Vector Machine Classification for Screening of Type 2 Diabetes Mellitus. Diagnostics 2023, 13, 1396. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, Y.; Xu, T.; Zhang, X. Hand-held Raman spectrometer-based flexible plasmonic biosensor for label-free multiplex urinalysis. Talanta 2024, 266, 124966. [Google Scholar] [CrossRef]
- Jermyn, M.; Mok, K.; Mercier, J.; Desroches, J.; Pichette, J.; Saint-Arnaud, K.; Bernstein, L.; Guiot, M.-C.; Petrecca, K.; Leblond, F. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci. Transl. Med. 2015, 7, 274ra19. [Google Scholar] [CrossRef]
- Bergholt, M.S.; Lin, K.; Wang, J.; Zheng, W.; Xu, H.; Huang, Q.; Ren, L.; Ho, K.Y.; Srivastava, S.; Huang, Z.; et al. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy enhances real-timein vivodiagnosis of adenomatous polyps during colonoscopy. J. Biophotonics 2016, 9, 333–342. [Google Scholar] [CrossRef]
- Stevens, O.; Petterson, I.E.I.; Day, J.C.C.; Stone, N. Developing fibre optic Raman probes for applications in clinical spectroscopy. Chem. Soc. Rev. 2016, 45, 1919–1934. [Google Scholar] [CrossRef]
- Desroches, J.; Jermyn, M.; Pinto, M.; Picot, F.; Tremblay, M.-A.; Obaid, S.; Marple, E.; Urmey, K.; Trudel, D.; Soulez, G.; et al. A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci. Rep. 2018, 8, 1792. [Google Scholar] [CrossRef]
- Kim, S.; Kim, W.; Bang, A.; Song, J.-Y.; Shin, J.-H.; Choi, S. Label-free breast cancer detection using fiber probe-based Raman spectrochemical biomarker-dominated profiles extracted from a mixture analysis algorithm. Anal. Methods 2021, 13, 3249–3255. [Google Scholar] [CrossRef]
- Zhang, S.; Vasudevan, S.; Tan, S.P.H.; Olivo, M. Fiber optic probe-based ATR-FTIR spectroscopy for rapid breast cancer detection: A pilot study. J. Biophotonics 2023, 16, e202300199. [Google Scholar] [CrossRef]
- Fuentes, A.M.; Narayan, A.; Milligan, K.; Lum, J.J.; Brolo, A.G.; Andrews, J.L.; Jirasek, A. Raman spectroscopy and convolutional neural networks for monitoring biochemical radiation response in breast tumour xenografts. Sci. Rep. 2023, 13, 1530. [Google Scholar] [CrossRef] [PubMed]
- Lasch, P.; Stämmler, M.; Zhang, M.; Baranska, M.; Bosch, A.; Majzner, K. FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria. Anal. Chem. 2018, 90, 8896–8904. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Yu, M.; Xia, J.; Zhu, L.; Zhang, T.; Zhu, Z. Tongue squamous cell carcinoma discrimination with Raman spectroscopy and convolutional neural networks. Vib. Spectrosc. 2019, 103, 102938. [Google Scholar] [CrossRef]
- Shin, H.; Oh, S.; Hong, S.; Kang, M.; Kang, D.; Ji, Y.-G.; Choi, B.H.; Kang, K.-W.; Jeong, H.; Park, Y.; et al. Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes. ACS Nano 2020, 14, 5435–5444. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H.; Yang, X.; Shao, X.; Li, T.; Chen, N.; Chen, Z.; Xue, W.; Pan, J.; Liu, S. Raman Spectroscopy Reveals Abnormal Changes in the Urine Composition of Prostate Cancer: An Application of an Intelligent Diagnostic Model with a Deep Learning Algorithm. Adv. Intell. Syst. 2021, 3, 2000090. [Google Scholar] [CrossRef]
- Guerrini, L.; Garcia-Rico, E.; O’loghlen, A.; Giannini, V.; Alvarez-Puebla, R.A. Surface-Enhanced Raman Scattering (SERS) Spectroscopy for Sensing and Characterization of Exosomes in Cancer Diagnosis. Cancers 2021, 13, 2179. [Google Scholar] [CrossRef]
- Kothari, R.; Jones, V.; Mena, D.; Bermúdez Reyes, V.; Shon, Y.; Smith, J.P.; Schmolze, D.; Cha, P.D.; Lai, L.; Storrie-Lombardi, M.C.; et al. Raman spectroscopy and artificial intelligence to predict the Bayesian probability of breast cancer. Sci. Rep. 2021, 11, 6482. [Google Scholar] [CrossRef]
- Azam, K.S.F.; Ryabchykov, O.; Bocklitz, T. A Review on Data Fusion of Multidimensional Medical and Biomedical Data. Molecules 2022, 27, 7448. [Google Scholar] [CrossRef]
- Kanemura, Y.; Kanazawa, M.; Hashimoto, S.; Hayashi, Y.; Fujiwara, E.; Suzuki, A.; Ishii, T.; Goto, M.; Nozaki, H.; Inoue, T.; et al. Assessment of skin inflammation using near-infrared Raman spectroscopy combined with artificial intelligence analysis in an animal model. Analyst 2022, 147, 2843–2850. [Google Scholar] [CrossRef]
- Liu, Z.; Su, W.; Ao, J.; Wang, M.; Jiang, Q.; He, J.; Gao, H.; Lei, S.; Nie, J.; Yan, X.; et al. Instant diagnosis of gastroscopic biopsy via deep-learned single-shot femtosecond stimulated Raman histology. Nat. Commun. 2022, 13, 4050. [Google Scholar] [CrossRef] [PubMed]
- Ben Shlomo, I.; Frankenthal, H.; Laor, A.; Greenhut, A.K. Detection of SARS-CoV-2 infection by exhaled breath spectral analysis: Introducing a ready-to-use point-of-care mass screening method. eClinicalMedicine 2022, 45, 101308. [Google Scholar] [CrossRef] [PubMed]
- Bellantuono, L.; Tommasi, R.; Pantaleo, E.; Verri, M.; Amoroso, N.; Crucitti, P.; Di Gioacchino, M.; Longo, F.; Monaco, A.; Naciu, A.M.; et al. An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis. Sci. Rep. 2023, 13, 16590. [Google Scholar] [CrossRef] [PubMed]
- Day, P.L.; Erdahl, S.; Rokke, D.L.; Wieczorek, M.; Johnson, P.W.; Jannetto, P.J.; Bornhorst, J.A.; Carter, R.E. Artificial Intelligence for Kidney Stone Spectra Analysis: Using Artificial Intelligence Algorithms for Quality Assurance in the Clinical Laboratory. Mayo Clin. Proc. Digit. Health 2023, 1, 1–12. [Google Scholar] [CrossRef]
- Farooq, S.; Del-Valle, M.; dos Santos, M.O.; dos Santos, S.N.; Bernardes, E.S.; Zezell, D.M. Rapid identification of breast cancer subtypes using micro-FTIR and machine learning methods. Appl. Opt. 2023, 62, C80–C87. [Google Scholar] [CrossRef]
- Contreras, J.; Mostafapour, S.; Popp, J.; Bocklitz, T. Siamese Networks for Clinically Relevant Bacteria Classification Based on Raman Spectroscopy. Molecules 2024, 29, 1061. [Google Scholar] [CrossRef]
Group | Sample Type | Population | Irradiation Mode | Observation Endpoint | Statistical and Prediction Methods |
---|---|---|---|---|---|
[86] | Isolated lymphocytes | Healthy donors (n = 20) | Low-dose γ-irradiation (0, 0.05 and 0.5 Gy) | At each dose, variation in classification performance was observed due to inter-individual intrinsic radiosensitivity. Sensitivities and specificities ranged from 65% to 100%. | PCA-LDA |
[82] | Isolated PBMCs | Prostate cancer patients (n = 22) and healthy volunteers (n = 26) | Low-dose photon beam irradiation (0, 0.05 and 0.5 Gy) | Prediction of γ-H2AX fluorescence (DNA damage) from RS spectra (RMSEP = 1.59; uncertainty level of 5%) | SVM |
[196] | Serum | Control (n = 3) and irradiated (n = 45) adult male BALB/C mice | X-ray (total body irradiation; 0, 2, 4, and Gy) | For all mice irradiated at doses 4 Gy and 6 Gy, the intensity of the myoglobin band (532 cm−1) increased. | p < 0.001 |
[87] | Plasma | Pre-/post-RT NPC patients (n = 40) and healthy volunteers (n = 30) | NS | Classification sensitivities were 83.3% for differentiating pre-/post-RT samples, 61.8% for post-RT and healthy samples, and 95.1% for pre-RT and healthy samples, with specificities of 91.2%, 67.4%, and 93%, respectively. | PCA-LDA |
[75] | Plasma | High-risk localised PCa patients with none or minimal late toxicity grade 0–1 (n = 24) and severe grade 2+ (n = 11) | IMRT Dose escalation up to 81 Gy | Classification sensitivity and specificity were 81.4% and 81.5%, respectively, for the differentiation of grade 0–1 and grade 2+ patients. | PLS-DA |
[76] | Isolated lymphocytes | PCa patients with none or minimal late toxicity grade 0–1 (n = 25) and severe grade 2+ (n = 17) | IMRT Dose escalation up to 81 Gy. Following this, patient lymphocytes were in vitro photon irradiated (0, 0.05, and 0.5 Gy). | The classification performance of grade 0–1 and grade 2+ patients using unirradiated lymphocytes (0 Gy) were the highest, with sensitivity, specificity, and accuracy being 95%, 92%, and 93%, respectively. | PLS-DA |
[88] | Pre-RT tumour biopsies | Rectal cancer patients who had a good (n = 10) and bad response (n = 10) following RT. | Preoperative 5 × 5 Gy short course RT | Classification of patient response to preoperative RT as good or poor obtained an accuracy of 86.04% | PCA-LDA |
[78] | Pre-neo-CRT stromal and epithelial tissues | OC patients (n = 50) | Full course of neo-CRT | RS: Classification of patient epithelial and stromal tissue with TRG 1 to 4 returned AUC values of 82% and 85%, respectively. FTIR: Discrimination of OC patient tissue with TRG 1 to 5 was achieved with an AUC of 86%. | PCA-QDA and KNN were applied to RS and FTIR spectra, respectively. |
[89] | Pre-/post-RT tissue biopsies | Intermediate risk PCa patients (n = 9) | Two fractions of HDR-BT (cumulative dose of 27 Gy) | Discrimination of pre-/post-RT tissues achieved accuracy, sensitivity, and specificity of 84.3%, 78.6% and 89.8%, respectively. | PCA-RF |
[192] | Malignant cervix tissue biopsies | Responding (complete (n = 18) and partial (n = 3)) and non- responding (n = 4) patients | Two fractions of EBRT (cumulative dose of 4.5 Gy) | Using spectral region of 1250–1500 cm−1 patient spectra could be separated based on radiotherapeutic response. | Mahalanobis distance, and spectral residuals |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monaghan, J.F.; Byrne, H.J.; Lyng, F.M.; Meade, A.D. Radiobiological Applications of Vibrational Spectroscopy: A Review of Analyses of Ionising Radiation Effects in Biology and Medicine. Radiation 2024, 4, 276-308. https://doi.org/10.3390/radiation4030022
Monaghan JF, Byrne HJ, Lyng FM, Meade AD. Radiobiological Applications of Vibrational Spectroscopy: A Review of Analyses of Ionising Radiation Effects in Biology and Medicine. Radiation. 2024; 4(3):276-308. https://doi.org/10.3390/radiation4030022
Chicago/Turabian StyleMonaghan, Jade F., Hugh J. Byrne, Fiona M. Lyng, and Aidan D. Meade. 2024. "Radiobiological Applications of Vibrational Spectroscopy: A Review of Analyses of Ionising Radiation Effects in Biology and Medicine" Radiation 4, no. 3: 276-308. https://doi.org/10.3390/radiation4030022
APA StyleMonaghan, J. F., Byrne, H. J., Lyng, F. M., & Meade, A. D. (2024). Radiobiological Applications of Vibrational Spectroscopy: A Review of Analyses of Ionising Radiation Effects in Biology and Medicine. Radiation, 4(3), 276-308. https://doi.org/10.3390/radiation4030022